9 research outputs found

    Systems Genetic Analysis of Osteoblast-Lineage Cells

    Get PDF
    The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types

    Programmed cell death in the regenerating deer antler

    No full text
    Antlers are the only mammalian appendages capable of epimorphic regeneration and thus provide a unique model for investigating the mechanisms that underlie mammalian regeneration. Antlers elongate by a modified endochondral ossification process while intramembranous ossification takes place concurrently around the antler shaft. In this study, sites of apoptosis in the growing antler tip were identified by TUNEL staining and related to cell proliferation, as determined by PCNA staining. Bcl-2 and bax were identified by RT-PCR and bax was also immunolocalized in tissue sections. The apoptotic index was high in perichondrium, undifferentiated mesenchymal cells and cellular periosteum but was low in skin. The proliferation index was high in mesenchyme, skin (specifically in hair follicles) and cellular periosteum; it was low in fibrous perichondrium and periosteum, and barely detectable in cartilage. Both bcl-2 and bax were found to be more highly expressed in the perichondrium/mesenchyme and non-mineralized cartilage than in skin and mineralized cartilage. Bax was immunolocalized in mesenchyme cells, chondroprogenitors, chondrocytes, osteoblasts, osteocytes and osteoclasts. In conclusion, this study shows that programmed cell death plays a necessary role in regenerating antlers, as it does during skeletal development, bone growth and bone remodelling. The high level of apoptosis and proliferation in mesenchymal progenitor cells confirms that this represents the antler ‘growth zone’. In fact, the percentage of TUNEL-positive cells in the mesenchymal growth zone (up to 64%) is higher than that recorded in any other adult tissue. This extensive cell death probably reflects the phenomenal rate of morphogenesis and tissue remodelling that takes place in a growing antler. The local and/or systemic factors that control the balance between cell growth and apoptosis in antler tissues now need to be determined

    Dysregulation of Wnt inhibitory factor 1 (Wif1) expression resulted in aberrant Wnt-β-catenin signaling and cell death of the cloaca endoderm, and anorectal malformations

    No full text
    In mammalian urorectal development, the urorectal septum (urs) descends from the ventral body wall to the cloaca membrane (cm) to partition the cloaca into urogenital sinus and rectum. Defective urs growth results in human congenital anorectal malformations (ARMs), and their pathogenic mechanisms are unclear. Recent studies only focused on the importance of urs mesenchyme proliferation, which is induced by endoderm-derived Sonic Hedgehog (Shh). Here, we showed that the programmed cell death of the apical urs and proximal cm endoderm is particularly crucial for the growth of urs during septation. The apoptotic endoderm was closely associated with the tempo-spatial expression of Wnt inhibitory factor 1 (Wif1), which is an inhibitor of Wnt-β-catenin signaling. In Wif1 lacZ/lacZ mutant mice and cultured urorectum with exogenous Wif1, cloaca septation was defective with undescended urs and hypospadias-like phenotypes, and such septation defects were also observed in Shh-/-mutants and in endodermal β-catenin gain-of-function (GOF) mutants. In addition, Wif1 and Shh were expressed in a complementary manner in the cloaca endoderm, and Wif1 was ectopically expressed in the urs and cm associated with excessive endodermal apoptosis and septation defects in Shh-/-mutants. Furthermore, apoptotic cells were markedly reduced in the endodermal β-catenin GOF mutant embryos, which counteracted the inhibitory effects of Wif1. Taken altogether, these data suggest that regulated expression of Wif1 is critical for the growth of the urs during cloaca septation. Hence, Wif1 governs cell apoptosis of urs endoderm by repressing β-catenin signal, which may facilitate the protrusion of the underlying proliferating mesenchymal cells towards the cm for cloaca septation. Dysregulation of this endodermal Shh-Wif1-β-catenin signaling axis contributes to ARM pathogenesis. © 2014 Macmillan Publishers Limited All rights reserved.Link_to_subscribed_fulltex

    Systemic and Local Regulators of Bone Remodeling

    No full text
    corecore