34 research outputs found

    A New Basal Sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), Northwestern Argentina

    Get PDF
    BACKGROUND: Argentinean basal sauropodomorphs are known by several specimens from different basins; Ischigualasto, El Tranquilo, and Mogna. The Argentinean record is diverse and includes some of the most primitive known sauropodomorphs such as Panphagia and Chromogisaurus, as well as more derived forms, including several massospondylids. Until now, the Massospondylidae were the group of basal sauropodomorphs most widely spread around Pangea with a record in almost all continents, mostly from the southern hemisphere, including the only record from Antarctica. METHODOLOGY/PRINCIPAL FINDING: We describe here a new basal sauropodomorph, Leyesaurus marayensis gen. et sp. nov., from the Quebrada del Barro Formation, an Upper Triassic-Lower Jurassic unit that crops out in northwestern Argentina. The new taxon is represented by a partial articulated skeleton that includes the skull, vertebral column, scapular and pelvic girdles, and hindlimb. Leyesaurus is diagnosed by a set of unique features, such as a sharply acute angle (50 degrees) formed by the ascending process of the maxilla and the alveolar margin, a straight ascending process of the maxilla with a longitudinal ridge on its lateral surface, noticeably bulging labial side of the maxillary teeth, greatly elongated cervical vertebrae, and proximal articular surface of metatarsal III that is shelf-like and medially deflected. Phylogenetic analysis recovers Leyesaurus as a basal sauropodomorph, sister taxon of Adeopapposaurus within the Massospondylidae. Moreover, the results suggest that massospondylids achieved a higher diversity than previously thought. CONCLUSIONS/SIGNIFICANCE: Our phylogenetic results differ with respect to previous analyses by rejecting the massospondylid affinities of some taxa from the northern hemisphere (e.g., Seitaad, Sarahsaurus). As a result, the new taxon Leyesaurus, coupled with other recent discoveries, suggests that the diversity of massospondylids in the southern hemisphere was higher than in other regions of Pangea. Finally, the close affinities of Leyesaurus with the Lower Jurassic Massospondylus suggest a younger age for the Quebrada del Barro Formation than previously postulated

    Zur Bestimmung des �tzkalkes im gebrannten Kalk

    No full text

    Bücherschau

    No full text

    Literatur

    No full text

    The Origin of Dark Sand in Eolian Deposits along the Southeastern Shore of Lake Michigan

    No full text
    Dune deposits on Lake Michigan\u27s southeastern shore contain pin stripe laminations: thin (\u3c3 \u3emm) laterally continuous (10 m) layers of dark sand, with vertical separations of 0.5-100 cm between laminations. On modern dune surfaces concentrations of dark sand are observed in ripple troughs and form continuous sheets that pass under ripple crests. We explore the source of the dark grains and the processes that can concentrate them in layers, using direct field observations, textural analysis, and point counts of sand grain minerals using the energy-dispersive x-ray analysis function on an electron microprobe. Large and medium size fractions of dune sand are dominated by quartz while smaller size fractions contain high proportions of dark heavy minerals (Fe-Ti oxides, garnets, and Fe-Mg silicates). Pin stripe laminations and dark surface patches are enriched in this fine-grained component, suggesting that sorting by grain size is important in their origin. The fine-grained sand fractions of glacial tills have low concentrations of dark heavy minerals. Thus, the high proportions of heavy dark minerals in finer-grained fractions of dune sands developed during postglacial transport. The association of fine dark sands with ripples suggests that they form as translatent stratification when smaller grains preferentially collect in troughs during ripple migration. Dark laminations in dunes seldom display characteristic features of grainflow (upward coarsening in grain size, troughlike cross section), indicating that this mechanism does not account for the majority of pin stripe laminations. Grainfall has been observed creating a patch of dark sand and may account for the formation of some pin stripe laminations. Pin stripe laminations indicate the orientation of past dune surfaces and can help reconstruct past dune geometries and migration histories

    Dune Complexes Along The Southeastern Shore Of Lake Michigan: Geomorphic History And Contemporary Processes

    No full text
    This field guide explores the geomorphology, ecology, contemporary processes, sedimentary structures, and geomorphic history of the large freshwater dune systems on the southeastern shore of Lake Michigan. Recent research studies on varying aspects of the dunes are highlighted at each stop. From north to south, these stops include P.J. Hoffmaster State Park near Muskegon, Michigan; Gilligan Lake and Green Mountain Beach southwest of Holland, Michigan; Saugatuck Dunes State Park and Saugatuck Harbor Natural Area, both near Saugatuck, Michigan; Warren Dunes State Park and Grand Mere State Park between the Indiana–Michigan border and Benton Harbor, Michigan; and Mount Baldy on the eastern edge of the Indiana Dunes National Lakeshore, Indiana. All of the complexes described are low perched transgressive dune complexes that are migrating inland over former lake plains or baymouth bars. Moving from the lake inland, the typical dune complex in this area consists of incipient foredunes, an established foredune ridge, a parabolic dune complex, and a back-dune ridge complex. All stages of ecological succession—beginning with a pioneer community dominated by beach grasses and ending with a mesic forest dominated by oak, maple, and beech—are typically present in the larger dune complexes. Like coastal dunes everywhere, surface changes in Lake Michigan dunes are driven by spatial gradients in sand flux, which, in turn, are determined by a complex interaction among wind, vegetation patterns, and preexisting topography. The patterns of surface change are modified by seasonal effects, with the majority of sand transport being associated with strong storms in the autumn, winter, and early spring. Sand can be temporarily stored in niveolian deposits during the winter, leading to oversteepened slopes, which collapse during the spring thaw. A variety of sedimentary bed forms and structures can be viewed in dunes along the southeastern shore of Lake Michigan, including wind ripples, lag deposits, raindrop impressions, adhesion ripples, adhesion warts, eolian turrets, sand pedestals, surface patches of fine-grained dark sand, pinstripes, paleosols, cross-bedding, climbing ripple lamination, niveolian deposits, and avalanche lobes. Most of these features are best seen immediately after strong storms in the autumn and winter. Remnants of older dune surfaces are exposed in a few places in back-dune ridge complexes; however, the current dune complexes are largely a product of events that occurred during and after the rise in lake levels to the Nipissing peak (ca. 4.5 ka). Broad fields of relatively low dunes developed during the drop in lake levels following the Nipissing peak. Beginning with the rise to the Algoma high lake level (ca. 3.2 ka), the lakeward edges of these fields were episodically reworked, forming the large parabolic dune complexes. A period of widespread dune stability resulted in the development of the Holland Paleosol, a particularly well-developed paleosol with Spodosol characteristics. Widespread dune growth and migration resumed prior to European settlement of the area and continue today
    corecore