9,739 research outputs found
Constructing a polynomial whose nodal set is the three-twist knot
We describe a procedure that creates an explicit complex-valued polynomial
function of three-dimensional space, whose nodal lines are the three-twist knot
. The construction generalizes a similar approach for lemniscate knots: a
braid representation is engineered from finite Fourier series and then
considered as the nodal set of a certain complex polynomial which depends on an
additional parameter. For sufficiently small values of this parameter, the
nodal lines form the three-twist knot. Further mathematical properties of this
map are explored, including the relationship of the phase critical points with
the Morse-Novikov number, which is nonzero as this knot is not fibred. We also
find analogous functions for other knots with six crossings. The particular
function we find, and the general procedure, should be useful for designing
knotted fields of particular knot types in various physical systems.Comment: 19 pages, 6 figure
High-resolution crystal structure of C-Phycocyanin and polarized optical spectra of single crystals
ZZE-Configuration of chromophore ß-153 in C-phycocyanin from Mastigocladus laminosus
The photochemistry of C-phycocyanin has been studied after denaturation in the dark. It shows
an irreversible reaction which has characteristics of a Ζ,Ζ,Ε- to Z,Z,Z-isomerization of dihydrobilins.
Its amplitude depends on the reaction conditions, with a maximum corresponding to 15%
conversion of one of the three PC chromophores. This chromophore is suggested to be ß-153, for
which recent X-ray data T. Schirmer, W. Bode, and R. Huber, J. Mol. Biol., submitted, show
ring D being highly twisted out of the plane of the other rings. During unfolding, there is thus a
probability of falling into the photochemically labile Z,Z,^-configuration
The multifrequency behaviour of the recurrent nova RS Ophiuchi
This review concentrates on the multifrequency behaviour of RS Ophiuchi and
in particular during its latest outburst. Confirmation of the 1945 outburst,
bipolar outflows and its possible fate as a Type Ia Supernova are discussed.Comment: 5 pages, 5 figures, in The Golden Age of Cataclysmic Variables and
Related Objects, F. Giovannelli & L. Sabau-Graziati (eds.), Mem. SAIt. 83 N.2
(in press
The symbiotic star CH Cygni. III. A precessing radio jet
VLA, MERLIN and Hubble Space Telescope imaging observations of the extended
regions of the symbiotic system CH Cygni are analysed. These extensions are
evidence of a strong collimation mechanism, probably an accretion disk
surrounding the hot component of the system. Over 16 years (between 1985 and
2001) the general trend is that these jets are seen to precess. Fitting a
simple ballistic model of matter ejection to the geometry of the extended
regions suggests a period of 6520 +/- 150 days, with a precession cone opening
angle of 35 +/- 1 degrees. This period is of the same order as that proposed
for the orbital period of the outer giant in the system, suggesting a possible
link between the two. Anomalous knots in the emission, not explained by the
simple model, are believed to be the result of older, slower moving ejecta, or
possibly jet material that has become disrupted through sideways interaction
with the surrounding medium.Comment: 9 pages, 4 figure
Evolution of the Cluster Correlation Function
We study the evolution of the cluster correlation function and its
richness-dependence from z = 0 to z = 3 using large-scale cosmological
simulations. A standard flat LCDM model with \Omega_m = 0.3 and, for
comparison, a tilted \Omega_m = 1 model, TSCDM, are used. The evolutionary
predictions are presented in a format suitable for direct comparisons with
observations. We find that the cluster correlation strength increases with
redshift: high redshift clusters are clustered more strongly (in comoving
scale) than low redshift clusters of the same mass. The increased correlations
with redshift, in spite of the decreasing mass correlation strength, is caused
by the strong increase in cluster bias with redshift: clusters represent higher
density peaks of the mass distribution as the redshift increases. The
richness-dependent cluster correlation function, presented as the
correlation-scale versus cluster mean separation relation, R_0 - d, is found to
be, remarkably, independent of redshift to z <~ 2 for LCDM and z <~ 1 for TCDM
(for a fixed correlation function slope and cluster mass within a fixed
comoving radius). The non-evolving R_0 - d relation implies that both the
comoving clustering scale and the cluster mean separation increase with
redshift for the same mass clusters so that the R_0 - d relation remains
essentially unchanged. The evolution of the R_0 - d relation from z ~ 0 to z ~
3 provides an important new tool in cosmology; it can be used to break
degeneracies that exist at z ~ 0 and provide precise determination of
cosmological parameters.Comment: AASTeX, 15 pages, including 5 figures, accepted version for
publication in ApJ, vol.603, March 200
Thermal radio emission from novae & symbiotics with the Square Kilometre Array
The thermal radio emission of novae during outburst enables us to derive
fundamental quantities such as the ejected mass, kinetic energy, and density
profile of the ejecta. Recent observations with newly-upgraded facilities such
as the VLA and e-MERLIN are just beginning to reveal the incredibly complex
processes of mass ejection in novae (ejections appear to often proceed in
multiple phases and over prolonged timescales). Symbiotic stars can also
exhibit outbursts, which are sometimes accompanied by the expulsion of material
in jets. However, unlike novae, the long-term thermal radio emission of
symbiotics originates in the wind of the giant secondary star, which is
irradiated by the hot white dwarf. The effect of the white dwarf on the giant's
wind is strongly time variable, and the physical mechanism driving these
variations remains a mystery (possibilities include accretion instabilities and
time-variable nuclear burning on the white dwarf's surface).
The exquisite sensitivity of SKA1 will enable us to survey novae throughout
the Galaxy, unveiling statistically complete populations. With SKA2 it will be
possible to carry out similar studies in the Magellanic Clouds. This will
enable high-quality tests of the theory behind accretion and mass loss from
accreting white dwarfs, with significant implications for determining their
possible role as Type Ia supernova progenitors. Observations with SKA1-MID in
particular, over a broad range of frequencies, but with emphasis on the higher
frequencies, will provide an unparalleled view of the physical processes
driving mass ejection and resulting in the diversity of novae, whilst also
determining the accretion processes and rates in symbiotic stars.Comment: 13 pages, 3 figures, in proceedings of "Advancing Astrophysics with
the Square Kilometre Array", PoS(AASKA14)116, in pres
- …
