8,493 research outputs found
The symbiotic star CH Cygni. III. A precessing radio jet
VLA, MERLIN and Hubble Space Telescope imaging observations of the extended
regions of the symbiotic system CH Cygni are analysed. These extensions are
evidence of a strong collimation mechanism, probably an accretion disk
surrounding the hot component of the system. Over 16 years (between 1985 and
2001) the general trend is that these jets are seen to precess. Fitting a
simple ballistic model of matter ejection to the geometry of the extended
regions suggests a period of 6520 +/- 150 days, with a precession cone opening
angle of 35 +/- 1 degrees. This period is of the same order as that proposed
for the orbital period of the outer giant in the system, suggesting a possible
link between the two. Anomalous knots in the emission, not explained by the
simple model, are believed to be the result of older, slower moving ejecta, or
possibly jet material that has become disrupted through sideways interaction
with the surrounding medium.Comment: 9 pages, 4 figure
Optimal placement of a limited number of observations for period searches
Robotic telescopes present the opportunity for the sparse temporal placement
of observations when period searching. We address the best way to place a
limited number of observations to cover the dynamic range of frequencies
required by an observer. We show that an observation distribution geometrically
spaced in time can minimise aliasing effects arising from sparse sampling,
substantially improving signal detection quality. The base of the geometric
series is however a critical factor in the overall success of this strategy.
Further, we show that for such an optimal distribution observations may be
reordered, as long as the distribution of spacings is preserved, with almost no
loss of quality. This implies that optimal observing strategies can retain
significant flexibility in the face of scheduling constraints, by providing
scope for on-the-fly adaptation. Finally, we present optimal geometric
samplings for a wide range of common observing scenarios, with an emphasis on
practical application by the observer at the telescope. Such a sampling
represents the best practical empirical solution to the undersampling problem
that we are aware of. The technique has applications to robotic telescope and
satellite observing strategies, where target acquisition overheads mean that a
greater total target exposure time (and hence signal-to-noise) can often in
practice be achieved by limiting the number of observations.Comment: 8 pages with 16 figure
Hubble Space Telescope Imaging of the Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006)
We report Hubble Space Telescope imaging obtained 155 days after the 2006
outburst of RS Ophiuchi. We detect extended emission in both [O III] and [Ne V]
lines. In both lines, the remnant has a double ring structure. The E-W
orientation and total extent of these structures (580+-50 AU at d=1.6kpc) is
consistent with that expected due to expansion of emitting regions imaged
earlier in the outburst at radio wavelengths. Expansion at high velocity
appears to have been roughly constant in the E-W direction (v_{exp} = 3200+-300
km/s in the plane of the sky), with tentative evidence of deceleration N-S. We
present a bipolar model of the remnant whose inclination is consistent with
that of the central binary. The true expansion velocities of the polar
components are then v = 5600+-1100 km/s. We suggest that the bipolar morphology
of the remnant results from interaction of the outburst ejecta with a
circumstellar medium that is significantly denser in the equatorial regions of
the binary than at the poles. This is also consistent with observations of
shock evolution in the X-ray and the possible presence of dust in the infrared.
Furthermore, it is in line with models of the shaping of planetary nebulae with
close binary central systems, and also with recent observations relating to the
progenitors of Type Ia supernovae, for which recurrent novae are a proposed
candidate. Our observations also reveal more extended structures to the S and E
of the remnant whose possible origin is briefly discussed.Comment: 13 pages, 2 figures, accepted for publication in ApJ
Conceptual design study of a Harrier V/STOL research aircraft
MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed
Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution
Gravitational wave sources are a promising cosmological standard candle
because their intrinsic luminosities are determined by fundamental physics (and
are insensitive to dust extinction). They are, however, affected by weak
lensing magnification due to the gravitational lensing from structures along
the line of sight. This lensing is a source of uncertainty in the distance
determination, even in the limit of perfect standard candle measurements. It is
commonly believed that the uncertainty in the distance to an ensemble of
gravitational wave sources is limited by the standard deviation of the lensing
magnification distribution divided by the square root of the number of sources.
Here we show that by exploiting the non-Gaussian nature of the lensing
magnification distribution, we can improve this distance determination,
typically by a factor of 2--3; we provide a fitting formula for the effective
distance accuracy as a function of redshift for sources where the lensing noise
dominates.Comment: matches PRD accepted version (expanded description of the
cosmological parameter space + minor changes
New issues for Numerical Stochastic Perturbation Theory
First attempts in the application of Numerical Stochastic Perturbation Theory
(NSPT) to the problem of pushing one loop further the computation of SU(3)
(SU(2)) pertubative beta function (in different schemes) are reviewed and the
relevance of such a computation is discussed. Other issues include the proposal
of a different strategy for gauge-fixed NSPT computations in lattice QCD.Comment: 3 pages, Latex, LATTICE98(algorithms
- …
