30 research outputs found

    Altered sphingolipid pathway in SARS-CoV-2 infected human lung tissue

    Get PDF
    IntroductionThe SARS-CoV-2 mediated COVID-19 pandemic has impacted millions worldwide. Hyper-inflammatory processes, including cytokine storm, contribute to long-standing tissue injury and damage in COVID-19. The metabolism of sphingolipids as regulators of cell survival, differentiation, and proliferation has been implicated in inflammatory signaling and cytokine responses. Sphingosine-kinase-1 (SK1) and ceramide-synthase-2 (CERS2) generate metabolites that regulate the anti- and pro-apoptotic processes, respectively. Alterations in SK1 and CERS2 expression may contribute to the inflammation and tissue damage during COVID-19. The central objective of this study is to evaluate structural changes in the lung post-SARS-CoV-2 infection and to investigate whether the sphingolipid rheostat is altered in response to SARS-CoV-2 infection.MethodsCentral and peripheral lung tissues from COVID-19+ or control autopsies and resected lung tissue from COVID-19 convalescents were subjected to histologic evaluation of airspace and collagen deposisiton, and immunohistochemical evaluation of SK1 and CERS2.ResultsHere, we report significant reduction in air space and increase in collagen deposition in lung autopsy tissues from patients who died from COVID-19 (COVID-19+) and COVID-19 convalescent individuals. SK1 expression increased in the lungs of COVID-19+ autopsies and COVID-19 convalescent lung tissue compared to controls and was mostly associated with Type II pneumocytes and alveolar macrophages. No significant difference in CERS2 expression was noted. SARS-CoV-2 infection upregulates SK1 and increases the ratio of SK1 to CERS2 expression in lung tissues of COVID-19 autopsies and COVID-19 convalescents.DiscussionThese data suggest an alteration in the sphingolipid rheostat in lung tissue during COVID-19, suggesting a potential contribution to the inflammation and tissue damage associated with viral infection

    COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    Background:Chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality. Present-day diagnostic criteria are largely based solely on spirometric criteria. Accumulating evidence has identified a substantial number of individuals without spirometric evidence of COPD who suffer from respiratory symptoms and/or increased morbidity and mortality. There is a clear need for an expanded definition of COPD that is linked to physiologic, structural (computed tomography [CT]) and clinical evidence of disease. Using data from the COPD Genetic Epidemiology study (COPDGene®), we hypothesized that an integrated approach that includes environmental exposure, clinical symptoms, chest CT imaging and spirometry better defines disease and captures the likelihood of progression of respiratory obstruction and mortality. Methods:Four key disease characteristics - environmental exposure (cigarette smoking), clinical symptoms (dyspnea and/or chronic bronchitis), chest CT imaging abnormalities (emphysema, gas trapping and/or airway wall thickening), and abnormal spirometry - were evaluated in a group of 8784 current and former smokers who were participants in COPDGene® Phase 1. Using these 4 disease characteristics, 8 categories of participants were identified and evaluated for odds of spirometric disease progression (FEV1 > 350 ml loss over 5 years), and the hazard ratio for all-cause mortality was examined. Results:Using smokers without symptoms, CT imaging abnormalities or airflow obstruction as the reference population, individuals were classified as Possible COPD, Probable COPD and Definite COPD. Current Global initiative for obstructive Lung Disease (GOLD) criteria would diagnose 4062 (46%) of the 8784 study participants with COPD. The proposed COPDGene® 2019 diagnostic criteria would add an additional 3144 participants. Under the new criteria, 82% of the 8784 study participants would be diagnosed with Possible, Probable or Definite COPD. These COPD groups showed increased risk of disease progression and mortality. Mortality increased in patients as the number of their COPD characteristics increased, with a maximum hazard ratio for all cause-mortality of 5.18 (95% confidence interval [CI]: 4.15-6.48) in those with all 4 disease characteristics. Conclusions:A substantial portion of smokers with respiratory symptoms and imaging abnormalities do not manifest spirometric obstruction as defined by population normals. These individuals are at significant risk of death and spirometric disease progression. We propose to redefine the diagnosis of COPD through an integrated approach using environmental exposure, clinical symptoms, CT imaging and spirometric criteria. These expanded criteria offer the potential to stimulate both current and future interventions that could slow or halt disease progression in patients before disability or irreversible lung structural changes develop

    Centrilobular emphysema and coronary artery calcification: Mediation analysis in the SPIROMICS cohort

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) is associated with a two-to-five fold increase in the risk of coronary artery disease independent of shared risk factors. This association is hypothesized to be mediated by systemic inflammation but this link has not been established. Methods: We included 300 participants enrolled in the SPIROMICS cohort, 75 each of lifetime non-smokers, smokers without airflow obstruction, mild-moderate COPD, and severe-very severe COPD. We quantified emphysema and airway disease on computed tomography, characterized visual emphysema subtypes (centrilobular and paraseptal) and airway disease, and used the Weston visual score to quantify coronary artery calcification (CAC). We used the Sobel test to determine whether markers of systemic inflammation mediated a link between spirometric and radiographic features of COPD and CAC. Results: FEV 1 /FVC but not quantitative emphysema or airway wall thickening was associated with CAC (p = 0.036), after adjustment for demographics, diabetes mellitus, hypertension, statin use, and CT scanner type. To explain this discordance, we examined visual subtypes of emphysema and airway disease, and found that centrilobular emphysema but not paraseptal emphysema or bronchial thickening was independently associated with CAC (p = 0.019). MMP3, VCAM1, CXCL5 and CXCL9 mediated 8, 8, 7 and 16% of the association between FEV 1 /FVC and CAC, respectively. Similar biomarkers partially mediated the association between centrilobular emphysema and CAC. Conclusions: The association between airflow obstruction and coronary calcification is driven primarily by the centrilobular subtype of emphysema, and is linked through bioactive molecules implicated in the pathogenesis of atherosclerosis. Trial Registration: ClinicalTrials.gov: Identifier: NCT01969344

    Multi-scale analysis of imaging features and its use in the study of COPD exacerbation susceptible phenotypes

    No full text
    We propose a novel framework for exploring patterns of respiratory pathophysiology from paired breath-hold CT scans. This is designed to enable analysis of large datasets with the view of determining relationships between functional measures, disease state and the likelihood of disease progression. The framework is based on the local distribution of image features at various anatomical scales. Principal Component Analysis is used to visualise and quantify the multi-scale anatomical variation of features, whilst the distribution subspace can be exploited within a classification setting. This framework enables hypothesis testing related to the different phenotypes implicated in Chronic Obstructive Pulmonary Disease (COPD). We illustrate the potential of our method on initial results from a subset of patients from the COPDGene study, who are exacerbation susceptible and non-susceptible
    corecore