11,704 research outputs found

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure

    The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster

    Get PDF
    The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100–500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales

    The Herschel Lensing Survey (HLS): Overview

    Get PDF
    The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ∼40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies (e.g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel’dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas

    Strongly coupled U(1) lattice gauge theory as a microscopic model of Yukawa theory

    Full text link
    Dynamical chiral symmetry breaking in a strongly coupled U(1) lattice gauge model with charged fermions and scalar is investigated by numerical simulation. Several composite neutral states are observed, in particular a massive fermion. In the vicinity of the tricritical point of this model we study the effective Yukawa coupling between this fermion and the Goldstone boson. The perturbative triviality bound of Yukawa models is nearly saturated. The theory is quite similar to strongly coupled Yukawa models for sufficiently large coupling except the occurrence of an additional state -- a gauge ball of mass about half the mass of the fermion.Comment: 4 page

    Deep Herschel view of obscured star formation in the Bullet cluster

    Get PDF
    We use deep, five band (100–500 μm) data from the Herschel Lensing Survey (HLS) to fully constrain the obscured star formation rate, SFR_(FIR), of galaxies in the Bullet cluster (z = 0.296), and a smaller background system (z = 0.35) in the same field. Herschel detects 23 Bullet cluster members with a total SFRFIR = 144±14 M_☉ yr^(-1). On average, the background system contains brighter far-infrared (FIR) galaxies, with ~50% higher SFRFIR (21 galaxies; 207 ± 9 M_☉ yr^(-1)). SFRs extrapolated from 24 μm flux via recent templates (SFR_(24 µm)) agree well with SFRFIR for ~60% of the cluster galaxies. In the remaining ~40%, SFR24 µm underestimates SFR_(FIR) due to a significant excess in observed S_(100)/S_(24) (rest frame S_(75)/S_(18)) compared to templates of the same FIR luminosity

    A Polarization Sensitive Bolometric Receiver for Observations of the Cosmic Microwave Background

    Get PDF
    We have developed a bolometric receiver that is intrinsically sensitive to linear polarization for the purpose of making measurements of the polarization of the cosmic microwave background radiation. The receiver consists of a pair of co-located silicon nitride micromesh absorbers which couple anisotropically to linearly polarized radiation through a corrugated waveguide structure. This system allows background limited, simultaneous measurement of the Stokes I and Q parameters over ~30% bandwidths at frequencies from ~60 to 600 GHz. Since both linear polarizations traverse identical optical paths from the sky to the point of detection, the susceptibility of the system to systematic effects is minimized. The amount of uncorrelated noise between the two polarization senses is limited to the quantum limit of thermal and photon shot noise, while drifts in the relative responsivity to orthogonal polarizations are limited to the effect of non-uniformity in the thin film deposition of the leads and the intrinsic thermistor properties. Devices using NTD Ge thermistors have achieved NEPs of 2•10^(-17) W/√Hz with 1/f knees below 100mHz at a base temperature of 270 mK. Numerical modelling of the structures has been used to optimize the bolometer geometry and coupling to optics. Comparisons of numerical results and experimental data are made. A description of how the quantities measured by the device can be interpreted in terms of the Stokes parameters is presented. The receiver developed for the Boomerang and Planck HFI focal planes is presented in detail

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0⩽kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T−1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio
    • …
    corecore