216 research outputs found

    Next-to-leading-order temperature corrections to correlators in QCD

    Full text link
    Corrections of order T4T^4 to vector and axial current correlators in QCD at a finite temperature T<TcT<T_c are obtained using dispersion relations for the amplitudes of deep inelastic scattering on pions. Their relation with the operator product expansion is presented. An interpretation of the results in terms of TT-dependent meson masses is given: masses of ρ\rho and a1a_1 start to move with temperature in order T4T^4.Comment: 13 pages, no figures, CERN-TH.7215/94, BUTP-94/

    Thermally stable composite system Al2O3-Ce 0.75Zr0.25O2 for automotive three-way catalysts

    Full text link
    Present-day three-way catalysts operate in contact with exhaust gases whose temperature is as high as &gt;1000 C, so the problem of developing thermally stable catalytic compositions is still topical. A series of Al2O 3-Ce0.75Zr0.25O2 composites containing 0, 10, 25, and 50 wt % Al2O3 has been synthesized by direct precipitation. The as-prepared composites and those calcined in air at 1000 and 1100 C have been characterized by BET, X-ray diffraction, transmission electron microscopy, and temperature-programmed reduction methods. The composites aged at 1050 C in a 2% O2 + 10% H2O + 88% N2 atmosphere have been used to prepare monolith catalysts, and the oxygen storage capacity (OSC) of the latter has been measured using a gas analysis setup. As the proportion of Al2O 3 in the composite is raised, the mixing uniformity and degree of dispersion of Ce x Zr1-x O2-δ particles increase, their chemical composition becomes homogeneous, and the amount of cerium involved in oxidation and reduction increases. The composite containing 50 wt % Al2O3 is a mixture of Ce x Zr 1-x O2-δ and Al2O3 crystallites, whose size is practically unaffected by calcination. The (Pt/Al2O3 + Al2O3-Ce 0.75Zr0.25O2) based on this composite has the highest OSC and is the most active. For this reason, full-scale testing of this catalyst is recommended. © 2013 Pleiades Publishing, Ltd

    Hot Nucleons in Chiral Soliton Models

    Full text link
    Chiral lagrangians as effective field theories of QCD are most suitable for the study of nucleons in a hot pion gas because they contain pions and also baryons as solitons of the same action. The semiclassical treatment of the soliton solutions must be augmented by pionic fluctuations which requires renormalisation to 1-loop, and finite temperatures do not introduce new ultraviolet divergencies and may easily be considered. Alternatively, a renormalisation scheme based on the renormalisation group equation at finite temperature comprises and extends the rigorous results of chiral perturbation theory and renders the low energy constants temperature-dependent which allows the construction of temperature-dependent solitons below the critical temperature. The temperature-dependence of the baryon energy and the pion-nucleon coupling is studied. There is no simple scaling law for the temperature-dependence of these quantities.Comment: 17 pages (RevTeX), 5 figure

    Skyrmion Multi-Walls

    Full text link
    Skyrmion walls are topologically-nontrivial solutions of the Skyrme system which are periodic in two spatial directions. We report numerical investigations which show that solutions representing parallel multi-walls exist. The most stable configuration is that of the square NN-wall, which in the NN\to\infty limit becomes the cubically-symmetric Skyrme crystal. There is also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur

    X-ray Emission from Wind Blown Bubbles. III. ASCA SIS Observations of NGC6888

    Full text link
    We present ASCA SIS observations of the wind-blown bubble NGC6888. Owing to the higher sensitivity of the SIS for higher energy photons compared to the ROSAT PSPC, we are able to detect a T ~ 8x10^6 K plasma component in addition to the T ~ 1.3x10^6 K component previously detected in PSPC observations. No significant temperature variations are detected within NGC6888. Garcia-Segura & Mac Low's (1995) analytical models of WR bubbles constrained by the observed size, expansion velocity, and mass of the nebular shell under-predict the stellar wind luminosity, and cannot reproduce simultaneously the observed X-ray luminosity, spectrum, surface brightness profile, and SIS count rate of NGC6888's bubble interior. The agreement between observations and expectations from models can be improved if one or more of the following ad hoc assumptions are made: (1) the stellar wind luminosity was weaker in the past, (2) the bubble is at a special evolutionary stage and the nebular shell has recently been decelerated to 1/2 of its previous expansion velocity, and (3) the heat conduction between the hot interior and the cool nebular shell is suppressed. Chandra and XMM-Newton observations with high spatial resolution and high sensitivity are needed to determine accurately the physical conditions NGC6888's interior hot gas for critical comparisons with bubble models.Comment: 24 pages, 6 figures; accepted for Astrophysical Journal, Nov 1, 2005 issu

    Computation of the winding number diffusion rate due to the cosmological sphaleron

    Get PDF
    A detailed quantitative analysis of the transition process mediated by a sphaleron type non-Abelian gauge field configuration in a static Einstein universe is carried out. By examining spectra of the fluctuation operators and applying the zeta function regularization scheme, a closed analytical expression for the transition rate at the one-loop level is derived. This is a unique example of an exact solution for a sphaleron model in 3+13+1 spacetime dimensions.Comment: Some style corrections suggested by the referee are introduced (mainly in Sec.II), one reference added. To appear in Phys.Rev.D 29 pages, LaTeX, 3 Postscript figures, uses epsf.st

    Chiral-symmetry restoration in the linear sigma model at nonzero temperature and baryon density

    Get PDF
    We study the chiral phase transition in the linear sigma model with 2 quark flavors and NcN_c colors. One-loop calculations predict a first-order phase transition at both μ=0\mu=0 and μ0\mu\neq 0. We also discuss the phase diagram and make a comparison with a thermal parametrization of existing heavy-ion experimental data.Comment: 12 pages, 6 ps-figures, LaTe

    Radioactive decays at limits of nuclear stability

    Full text link
    The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-life, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.Comment: Review, 68 pages, 39 figure

    Fermion sea along the sphaleron barrier

    Full text link
    In this revised version we have improved the treatment of the top and bottom quark mass. This leads to slight changes of the numerical results, especially of those presented in Fig.4. The discussion of the numerical procedure and accuracy has been extended.Comment: 39 pages (LaTex) plus 5 figures (uuencoded postscript files); RUB-TPII-62/93, to appear in Phys.Rev.

    The Effect of Bound Dineutrons upon BBN

    Full text link
    We have examined the effects of a bound dineutron, n2, upon big bang nucleosynthesis (BBN) as a function of its binding energy B_n2. We find a weakly bound dineutron has little impact but as B_n2 increases its presence begins to alter the flow of free nucleons to helium-4. Due to this disruption, and in the absence of changes to other binding energies or fundamental constants, BBN sets a reliable upper limit of B_n2 <~ 2.5 MeV in order to maintain the agreement with the observations of the primordial helium-4 mass fraction and D/H abundance
    corecore