16 research outputs found

    Epitope detection in monocytes (EDIM) for liquid biopsy including identification of GD2 in childhood neuroblastoma-a pilot study

    No full text
    BACKGROUND: Neuroblastoma (NB) is the most common paediatric extracranial solid malignancy. We analysed the role of the epitope detection in monocytes (EDIM) technique for liquid biopsy in NB patients. METHODS: Tumour epitopes transketolase-like 1 (TKTL1), Apo10 (DNaseX) and GD2 were assessed: expression levels in seven NB tumour samples and five NB cell lines were analysed using RT-PCR and flow cytometry. LAN-1 cells were co-cultured with blood and assessed using EDIM. Peripheral blood macrophages of patients with neuroblastoma (n = 38) and healthy individuals (control group, n = 37) were labelled (CD14(+)/CD16(+)) and assessed for TKTL1, Apo10 and GD2 using the EDIM technology. RESULTS: mRNA expression of TKTL1 and DNaseX/Apo10 was elevated in 6/7 NB samples. Spike experiments showed upregulation of TKTL1, Apo10 and GD2 in LAN-1 cells following co-culturing with blood. TKTL1 and Apo10 were present in macrophages of 36/38 patients, and GD2 in 15/19 patients. The 37 control samples were all negative. EDIM expression scores of the three epitopes allowed differentiation between NB patients and healthy individuals. CONCLUSIONS: The EDIM test might serve as a non-invasive tool for liquid biopsy in children suffering from NB. Future studies are necessary for assessing risk stratification, tumour biology, treatment monitoring, and early detection of tumour relapses

    Peripheral PD-1+CD56+T-cell frequencies correlate with outcome in stage IV melanoma under PD-1 blockade

    Get PDF
    Immune checkpoint blockade with anti-PD-1 antibodies is showing great promise for patients with metastatic melanoma and other malignancies, but despite good responses by some patients who achieve partial or complete regression, many others still do not respond. Here, we sought peripheral blood T-cell biomarker candidates predicting treatment outcome in 75 stage IV melanoma patients treated with anti-PD-1 antibodies. We investigated associations with clinical response, progression-free survival (PFS) and overall survival (OS). Univariate analysis of potential biological confounders and known biomarkers, and a multivariate model, was used to determine statistical independence of associations between candidate biomarkers and clinical outcomes. We found that a lower than median frequency of peripheral PD-1+CD56+ T-cells was associated with longer OS (p = 0.004), PFS (p = 0.041) and superior clinical benefit (p = 0.009). However, neither frequencies of CD56-CD4+ nor CD56-CD8+ T-cells, nor of the PD-1+ fraction within the CD4 or CD8 subsets was associated with clinical outcome. In a multivariate model with known confounders and biomarkers only the M-category (HR, 3.11; p = 0.007) and the frequency of PD-1+CD56+ T-cells (HR, 2.39; p = 0.028) were identified as independent predictive factors for clinical outcome under PD-1 blockade. Thus, a lower than median frequency of peripheral blood PD-1+CD56+ T-cells prior to starting anti-PD-1 checkpoint blockade is associated with superior clinical response, longer PFS and OS of stage IV melanoma patients

    Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma

    No full text
    Background The need for reliable clinical biomarkers to predict which patients with melanoma will benefit from immune checkpoint blockade (ICB) remains unmet. Several different parameters have been considered in the past, including routine differential blood counts, T cell subset distribution patterns and quantification of peripheral myeloid-derived suppressor cells (MDSC), but none has yet achieved sufficient accuracy for clinical utility.Methods Here, we investigated potential cellular biomarkers from clinical routine blood counts as well as several myeloid and T cell subsets, using flow cytometry, in two independent cohorts of a total of 141 patients with stage IV M1c melanoma before and during ICB.Results Elevated baseline frequencies of monocytic MDSCs (M-MDSC) in the blood were confirmed to predict shorter overall survival (OS) (HR 2.086, p=0.030) and progression-free survival (HR 2.425, p=0.001) in the whole patient cohort. However, we identified a subgroup of patients with highly elevated baseline M-MDSC frequencies that fell below a defined cut-off during therapy and found that these patients had a longer OS that was similar to that of patients with low baseline M-MDSC frequencies. Importantly, patients with high M-MDSC frequencies exhibited a skewed baseline distribution of certain other immune cells but these did not influence patient survival, illustrating the paramount utility of MDSC assessment.Conclusion We confirmed that in general, highly elevated frequencies of peripheral M-MDSC are associated with poorer outcomes of ICB in metastatic melanoma. However, one reason for an imperfect correlation between high baseline MDSCs and outcome for individual patients may be the subgroup of patients identified here, with rapidly decreasing M-MDSCs on therapy, in whom the negative effect of high M-MDSC frequencies was lost. These findings might contribute to developing more reliable predictors of late-stage melanoma response to ICB at the individual patient level. A multifactorial model seeking such markers yielded only MDSC behavior and serum lactate dehydrogenase as predictors of treatment outcome

    Istaroxime Inhibits Motility and Down-Regulates Orai1 Expression, SOCE and FAK Phosphorylation in Prostate Cancer Cells

    No full text
    Background/Aims: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. Methods: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. Results: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. Conclusion: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development
    corecore