24 research outputs found

    Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50

    No full text
    International audienceWe report on the search for dark matter WIMPs in the mass range below 10 GeV/c2^2, from the analysis of the entire dataset acquired with a low-radioactivity argon target by the DarkSide-50 experiment at LNGS. The new analysis benefits from more accurate calibration of the detector response, improved background model, and better determination of systematic uncertainties, allowing us to accurately model the background rate and spectra down to 0.06 keVer_{er}. A 90% C.L. exclusion limit for the spin-independent cross section of 3 GeV/c2^2 mass WIMP on nucleons is set at 6×\times1043^{-43} cm2^2, about a factor 10 better than the previous DarkSide-50 limit. This analysis extends the exclusion region for spin-independent dark matter interactions below the current experimental constraints in the [1.2,3.6][1.2, 3.6] GeV/c2^2 WIMP mass range

    Long-term temporal stability of the DarkSide-50 dark matter detector

    No full text
    International audienceThe stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction

    Search for dark matter particle interactions with electron final states with DarkSide-50

    No full text
    We present a search for dark matter particles with sub-GeV/c2c^2 masses whose interactions have final state electrons using the DarkSide-50 experiment's (12306 ±\pm 184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σˉe\bar{\sigma}_e, the axioelectric coupling constant gAeg_{Ae}, and the dark photon kinetic mixing parameter κ\kappa. We also set the first dark matter direct-detection constraints on the mixing angle Ue42\left|U_{e4}\right|^2 for keV sterile neutrinos

    Long-term temporal stability of the DarkSide-50 dark matter detector

    No full text
    International audienceThe stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction
    corecore