367 research outputs found

    Chandra observation of the Galactic supernova remnant CTB 109 (G109.1-1.0)

    Full text link
    Context: We study the X-ray emission of the Galactic supernova remnant (SNR) CTB 109 (G109.1-1.0), which is well-known for its enigmatic half-shell morphology both in radio and in X-rays and is associated with the anomalous X-ray pulsar (AXP) 1E2259+586. Aims: We want to understand the origin of the X-ray bright feature inside the SNR called the Lobe and the details of the interaction of the SNR shock wave with the ambient interstellar medium (ISM). Methods: The Lobe and the northeastern part of the SNR were observed with Chandra ACIS-I. We analysed the spectrum of the X-ray emission by dividing the entire observed emission into small regions. The X-ray emission is best reproduced with one-component or two-component non-equilibrium ionisation models depending on the position. In the two-component model one emission component represents the shocked ISM and the other the shocked ejecta. Results: We detect enhanced element abundances, in particular for Si and Fe, in and around the Lobe. There is one particular region next to the Lobe with a high Si abundance of 3.3 (2.6 - 4.0) times the solar value. This is the first, unequivocal detection of ejecta in CTB 109. Conclusions: The new Chandra data confirm that the Lobe was created by the interaction of the SNR shock and the supernova ejecta with dense and inhomogeneous medium in the environment of SNR CTB 109. The newly calculated age of the SNR is t ~ 1.4 x 10^4 yr.Comment: Accepted for publication in A&A. 9 pages, 10 figure

    The X-ray nebula of the filled center supernova remnant 3C58 and its interaction with the environment

    Full text link
    An \xmm observation of the plerionic supernova remnant 3C58 has allowed us to study the X-ray nebula with unprecedented detail. A spatially resolved spectral analysis with a resolution of 8\arcsec has yielded a precise determination of the relation between the spectral index and the distance from the center. We do not see any evidence for bright thermal emission from the central core. In contrast with previous ASCA and {\em Einstein} results, we derive an upper limit to the black-body 0.5-10 keV luminosity and emitting area of 1.8Ă—10321.8\times 10^{32} \ergsec and 1.3Ă—10101.3\times 10^{10} cm2^2, respectively, ruling out emission from the hot surface of the putative neutron star and also excluding the "outer-gap" model for hot polar caps. We have performed for the first time a spectral analysis of the outer regions of the X-ray nebula, where most of the emission is still non-thermal, but where the addition of a soft (kT=0.2-0.3 keV) optically thin plasma component is required to fit the spectrum at E<1E<1 keV. This component provides 6% of the whole remnant observed flux in the 0.5-10.0 keV band. We show that a Sedov interpretation is incompatible with the SN1181-3C58 association, unless there is a strong deviation from electron-ion energy equipartition, and that an origin of this thermal emission in terms of the expansion of the nebula into the ejecta core nicely fits all the radio and X-ray observations.Comment: 10 pages, 7 figures, accepted for publication in A&

    The distance to the Vela pulsar gauged with HST parallax oservations

    Get PDF
    The distance to the Vela pulsar (PSR B0833-45) has been traditionally assumed to be 500 pc. Although affected by a significant uncertainty, this value stuck to both the pulsar and the SNR. In an effort to obtain a model free distance measurement, we have applied high resolution astrometry to the pulsar V~23.6 optical counterpart. Using a set of five HST/WFPC2 observations, we have obtained the first optical measurement of the annual parallax of the Vela pulsar. The parallax turns out to be 3.4 +/- 0.7 mas, implying a distance of 294(-50;+76) pc, i.e. a value significantly lower than previously believed. This affects the estimate of the pulsar absolute luminosity and of its emission efficiency at various wavelengths and confirms the exceptionally high value of the N_e towards the Vela pulsar. Finally, the complete parallax data base allows for a better measurement of the Vela pulsar proper motion (mu_alpha(cos(delta))=-37.2 +/- 1.2 mas/yr; mu_delta=28.2 +/- 1.3 mas/yr after correcting for the peculiar motion of the Sun) which, at the parallax distance, implies a transverse velocity of ~65 km/s. Moreover, the proper motion position angle appears specially well aligned with the axis of symmetry of the X-ray nebula as seen by Chandra. Such an alignment allows to assess the space velocity of the Vela pulsar to be ~81 km/s.Comment: LaTeX, 21 pages, 5 figures. Accepted for publication in Ap

    A population of isolated hard X-ray sources near the supernova remnant Kes 69

    Full text link
    Recent X-ray observations of the supernova remnant IC443 interacting with molecular clouds have shown the presence of a new population of hard X-ray sources related to the remnant itself, which has been interpreted in terms of fast ejecta fragment propagating inside the dense environment. Prompted by these studies, we have obtained a deep {\sl XMM-Newton} observation of the supernova remnant (SNR) Kes 69, which also shows signs of shock-cloud interaction. We report on the detection of 18 hard X-ray sources in the field of Kes 69, a significant excess of the expected galactic source population in the field, spatially correlated with CO emission from the cloud in the remnant environment. The spectra of 3 of the 18 sources can be described as hard power laws with photon index <2 plus line emission associated to K-shell transitions. We discuss the two most promising scenarios for the interpretation of the sources, namely fast ejecta fragments (as in IC443) and cataclysmic variables. While most of the observational evidences are consistent with the former interpretation, we cannot rule out the latter.Comment: 9 pages, 5 figures, A&A in pres

    XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1):Evidence of shock-cloud interaction

    Get PDF
    The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS gamma-ray source HESS J1852-000. The X-ray emission from the remnant has been recently revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra, possibly associated with synchrotron radiation. We aim at describing the spatial distribution of the physical properties of the X-ray emitting plasma and at revealing the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also aim at investigating the origin of the gamma-ray emission, which may be Inverse Compton radiation associated with X-ray synchrotron emitting electrons or hadronic emission originating from the impact of high energy protons on the nearby clouds. We analyzed an XMM-Newton EPIC observation of Kes 78 by performing image analysis and spatially resolved spectral analysis on a set of three regions. We tested our findings against the observations of the 12CO and 13CO emission in the environment of the remnant. We revealed the complex X-ray morphology of Kes 78 and found variations of the spectral properties of the plasma, with significantly denser and cooler material at the eastern edge of the remnant, which we interpret as a signature of interaction with a molecular cloud. We also exclude the presence of narrow filaments emitting X-ray synchrotron radiation. Assuming that the very high energy gamma-ray emission is associated with Kes 78, the lack of synchrotron emission rules out a leptonic origin. A hadronic origin is further supported by evidence for interaction of the remnant with a dense molecular cloud in its eastern limb.Comment: Accepted for publication in A&

    Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery?

    Get PDF
    Patient-specific computational fluid dynamics is a powerful tool for investigating the hemodynamic risk in coronary arteries. Proper setting of flow boundary conditions in computational hemodynamic models of coronary arteries is one of the sources of uncertainty weakening the findings of in silico experiments, in consequence of the challenging task of obtaining in vivo 3D flow measurements within the clinical framework. Accordingly, in this study we evaluated the influence of assumptions on inflow velocity profile shape on coronary artery hemodynamics. To do that, (1) ten left anterior descending coronary artery (LAD) geometries were reconstructed from clinical angiography, and (2) eleven velocity profiles with realistic 3D features such as eccentricity and differently shaped (single- and double-vortex) secondary flows were generated analytically and imposed as inflow boundary conditions. Wall shear stress and helicity-based descriptors obtained prescribing the commonly used parabolic velocity profile were compared with those obtained with the other velocity profiles. Our findings indicated that the imposition of idealized velocity profiles as inflow boundary condition is acceptable as long the results of the proximal vessel segment are not considered, in LAD coronary arteries. As a pragmatic rule of thumb, a conservative estimation of the length of influence of the shape of the inflow velocity profile on LAD local hemodynamics can be given by the theoretical entrance length for cylindrical conduits in laminar flow conditions
    • …
    corecore