1,975 research outputs found

    Field-induced level crossings in spin clusters: Thermodynamics and magneto-elastic instability

    Full text link
    Quantum spin clusters with dominant antiferromagnetic Heisenberg exchange interactions typically exhibit a sequence of field-induced level crossings in the ground state as function of magnetic field. For fields near a level crossing, the cluster can be approximated by a two-level Hamiltonian at low temperatures. Perturbations, such as magnetic anisotropy or spin-phonon coupling, sensitively affect the behavior at the level-crossing points. The general two-level Hamiltonian of the spin system is derived in first-order perturbation theory, and the thermodynamic functions magnetization, magnetic torque, and magnetic specific heat are calculated. Then a magneto-elastic coupling is introduced and the effective two-level Hamilitonian for the spin-lattice system derived in the adiabatic approximation of the phonons. At the level crossings the system becomes unconditionally unstable against lattice distortions due to the effects of magnetic anisotropy. The resultant magneto-elastic instabilities at the level crossings are discussed, as well as the magnetic behavior.Comment: 13 pages, 8 figures, REVTEX

    Pharmacological Benefits of Herbal Formulations in the Management of <i>Psoriasis vulgaris<i>

    Get PDF
    Psoriasis is a chronic inflammatory skin disease, with an important impact on the patient's quality of life. Its incidence and prevalence are continuously increasing. The complex ethiopathology of this disorder is only partially known; there is a clear genetic predisposition, which associates a number of environmental triggering factors such as an unbalanced diet and lifestyle. The conventional therapeutic options are not always satisfactory in terms of efficiency and safety, therefore, complementary and alternative medicine approaches are frequently chosen by patients, mostly as self-medication. This review, based on recent literature flow data, outlines the pharmacological benefits of herbal formulations with antipsoriatic activity. It also reveals the molecules esponsible for their effects, as well as their interference with the metabolic and immunopathogenic mechanisms of this disease. An important number of plants have been proved to act as antipsoriatic agents, many botanical-based preparations containing key-phytochemical molecules (belonging mainly to phenolics, triterpenoids and phytosterols or unsaturated fatty acids, as mentioned in specific phyto-pharmaceutical databases). Specific mechanisms of action, which can explain their activity (such as lipoxygenase inhibition, antioxidant, anti-inflammatory, anti prostaglandin), were recently described. Only some of these formulations have been actively tested in vitro or in vivo . Most publications in the field agree on the need for more in vitro and in vivo studies, especially clinical assessment on patients with Psoriasis vulgaris . These would provide more accurate data on the efficacy and safety of such herbal formulations for this disease

    Simple proof of gauge invariance for the S-matrix element of strong-field photoionization

    Full text link
    The relationship between the length gauge (LG) and the velocity gauge (VG) exact forms of the photoionization probability amplitude is considered. Our motivation for this paper comes from applications of the Keldysh-Faisal-Reiss (KFR) theory, which describes atoms (or ions) in a strong laser field (in the nonrelativistic approach, in the dipole approximation). On the faith of a certain widely-accepted assumption, we present a simple proof that the well-known LG form of the exact photoionization (or photodetachment) probability amplitude is indeed the gauge-invariant result. In contrast, to obtain the VG form of this probability amplitude, one has to either (i) neglect the well-known Goeppert-Mayer exponential factor (which assures gauge invariance) during all the time evolution of the ionized electron or (ii) put some conditions on the vector potential of the laser field.Comment: The paper was initially submitted (in a previous version) on 16 October 2006 to J. Phys. A and rejected. This is the extended version (with 2 figures), which is identical to the paper published online on 12 December 2007 in Physica Script

    High flux cold Rubidium atomic beam for strongly coupled Cavity QED

    Full text link
    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity QED experiments in the regime of strong coupling. A 2 D+D^+ MOT, loaded by rubidium getters in a dry film coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate of 1.5 x 101010^{10} atoms/sec. The MM-MOT provided a continuous beam with tunable velocity. This beam was then directed through the waist of a 280 μ\mum cavity resulting in a Rabi splitting of more than +/- 10 MHz. The presence of sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling regime, with parameters (g, κ\kappa, γ\gamma)/2π\pi equal to (7, 3, 6)/ 2π\pi MHz.Comment: Journal pape

    Cavity QED with Diamond Nanocrystals and Silica Microspheres

    Full text link
    Normal mode splitting is observed in a cavity QED system, in which nitrogen vacancy centers in diamond nanocrystals are coupled to whispering gallery modes in a silica microsphere. The composite nanocrystal-microsphere system takes advantage of the exceptional spin properties of nitrogen vacancy centers as well as the ultra high quality factor of silica microspheres. The observation of the normal mode splitting indicates that the dipole optical interaction between the relevant nitrogen vacancy center and whispering gallery mode has reached the strong coupling regime of cavity QED

    MEG Upgrade Proposal

    Full text link
    We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the 6×10146 \times 10^{-14} level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. The photon-arm, with the largest liquid xenon (LXe) detector in the world, totalling 900 l, will also be improved by increasing the granularity at the incident face, by replacing the current photomultiplier tubes (PMTs) with a larger number of smaller photosensors and optimizing the photosensor layout also on the lateral faces. A new DAQ scheme involving the implementation of a new combined readout board capable of integrating the diverse functions of digitization, trigger capability and splitter functionality into one condensed unit, is also under development. We describe here the status of the MEG experiment, the scientific merits of the upgrade and the experimental methods we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron. 131 Page

    Measurement of the radiative decay of polarized muons in the MEG experiment

    Get PDF
    We studied the radiative muon decay μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma by using for the first time an almost fully polarized muon source. We identified a large sample (~13000) of these decays in a total sample of 1.8x10^14 positive muon decays collected in the MEG experiment in the years 2009--2010 and measured the branching ratio B(μ+e+ννˉγ\mu^+ \to e^+\nu\bar{\nu}\gamma) = (6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{\gamma} > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalization channel, and a strong quality check of the complete MEG experiment in the search for μ+e+γ\mu^+ \to e^+\gamma process.Comment: 8 pages, 7 figures. Added an introduction to NLO calculation which was recently calculated. Published versio

    ADHM/Nahm Construction of Localized Solitons in Noncommutative Gauge Theories

    Full text link
    We study the relationship between ADHM/Nahm construction and ``solution generating technique'' of BPS solitons in noncommutative gauge theories. ADHM/Nahm construction and ``solution generating technique'' are the most strong ways to construct exact BPS solitons. Localized solitons are the solitons which are generated by the ``solution generating technique.'' The shift operators which play crucial roles in ``solution generating technique'' naturally appear in ADHM/Nahm construction and we can construct various exact localized solitons including new solitons: localized periodic instantons (=localized calorons) and localized doubly-periodic instantons. Nahm construction also gives rise to BPS fluxons straightforwardly from the appropriate input Nahm data which is expected from the D-brane picture of BPS fluxons. We also show that the Fourier-transformed soliton of the localized caloron in the zero-period limit exactly coincides with the BPS fluxon.Comment: 30 pages, LaTeX, 3 figures; v3: minor changes, references added; v4: references added, version to appear in PR

    New constraint on the existence of the mu+-> e+ gamma decay

    Get PDF
    The analysis of a combined data set, totaling 3.6 \times 10^14 stopped muons on target, in the search for the lepton flavour violating decay mu^+ -> e^+ gamma is presented. The data collected by the MEG experiment at the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new upper limit on the branching ratio of this decay of 5.7 \times 10^-13 (90% confidence level). This represents a four times more stringent limit than the previous world best limit set by MEG.Comment: 5 pages, 3 figures, a version accepted in Phys. Rev. Let
    corecore