29 research outputs found

    Animacy and real-world size shape object representations in the human medial temporal lobes

    Get PDF
    Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL

    Individualized assessment of residual cognition in patients with disorders of consciousness

    Get PDF
    Patients diagnosed with disorders of consciousness show minimal or inconsistent behavioural evidence of conscious awareness. However, using functional neuroimaging, recent research in clinical neuroscience has identified a subpopulation of these patients who reliably produce neural markers indicative of awareness. In this study, we recorded electroencephalograms during a response-free movie task to assess narrative processing in patients with disorders of consciousness. Thirteen patients diagnosed with a disorder of consciousness and 28 healthy controls participated in this study. We designed a movie-watching/listening paradigm involving two suspenseful movie clips, one audiovisual and one audio-only, and used electroencephalography to extract patterns of brain activity that were maximally correlated between subjects. These activity patterns served as electrophysiological indices of narrative processing, which were compared to the neural responses of patients during the same movies. Our analysis revealed two patterns of neural activity, one for each movie condition, that were significantly and reliably correlated between healthy participants. Of the twelve patients who watched the audiovisual movie, 25% produced a pattern of activity that was significantly correlated with the healthy group, while of the ten who listened to the audio narrative, 30% produced electrophysiological patterns similar to controls (one patient responded appropriately to both). The method presented here allows for rapid bedside assessment of higher-order cognitive processing in patients with disorders of consciousness. By leveraging the common neural response to movie stimuli, we were able to identify comparable patterns of brain activity in individual, behaviourally non-responsive patients, reflecting a capacity for narrative processing

    Developing and validating tools to assess higher level cognition in children and adolescents

    Get PDF
    Collaborating with CBS, we will create a unique platform for understanding, detecting and predicting delays in cognition during the formative period from childhood to adolescence. The aim of this project is to develop and validate a battery of tests specifically for children and adolescents between the ages of 7 and 15 to measure various aspects of higher-level cognitive abilities. These include short-term and episodic memory, planning, reasoning, verbal abilities and executive functioning (those processes necessary to control behaviour, such as controlling attention and inhibition, working memory, reasoning and problem solving).https://ir.lib.uwo.ca/brainscanprojectsummaries/1042/thumbnail.jp

    Late positive complex in event-related potentials tracks memory signals when they are decision relevant.

    Get PDF
    The Late Positive Complex (LPC) is an Event-Related Potential (ERP) consistently observed in recognition-memory paradigms. In the present study, we investigated whether the LPC tracks the strength of multiple types of memory signals, and whether it does so in a decision dependent manner. For this purpose, we employed judgements of cumulative lifetime exposure to object concepts, and judgements of cumulative recent exposure (i.e., frequency judgements) in a study-test paradigm. A comparison of ERP signatures in relation to degree of prior exposure across the two memory tasks and the study phase revealed that the LPC tracks both types of memory signals, but only when they are relevant to the decision at hand. Another ERP component previously implicated in recognition memory, the FN400, showed a distinct pattern of activity across conditions that differed from the LPC; it tracked only recent exposure in a decision-dependent manner. Another similar ERP component typically linked to conceptual processing in past work, the N400, was sensitive to degree of recent and lifetime exposure, but it did not track them in a decision dependent manner. Finally, source localization analyses pointed to a potential source of the LPC in left ventral lateral parietal cortex, which also showed the decision-dependent effect. The current findings highlight the role of decision making in ERP markers of prior exposure in tasks other than those typically used in studies of recognition memory, and provides an initial link between the LPC and the previously suggested role of ventral lateral parietal cortex in memory judgements

    Bilingualism Affords No General Cognitive Advantages: A Population Study of Executive Function in 11,000 People

    Get PDF
    Whether acquiring a second language affords any general advantages to executive function has been a matter of fierce scientific debate for decades. If being bilingual does have benefits over and above the broader social, employment, and lifestyle gains that are available to speakers of a second language, then it should manifest as a cognitive advantage in the general population of bilinguals. We assessed 11,041 participants on a broad battery of 12 executive tasks whose functional and neural properties have been well described. Bilinguals showed an advantage over monolinguals on only one test (whereas monolinguals performed better on four tests), and these effects all disappeared when the groups were matched to remove potentially confounding factors. In any case, the size of the positive bilingual effect in the unmatched groups was so small that it would likely have a negligible impact on the cognitive performance of any individual

    Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake

    Get PDF
    Sleep resting state network (RSN) functional connectivity (FC) is poorly understood, particularly for rapid eye movement (REM), and in non-sleep deprived subjects. REM and non-REM (NREM) sleep involve competing drives; towards hypersynchronous cortical oscillations in NREM; and towards wake-like desynchronized oscillations in REM. This study employed simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to explore whether sleep RSN FC reflects these opposing drives. As hypothesized, this was confirmed for the majority of functional connections modulated by sleep. Further, changes were directional: e.g., positive wake correlations trended towards negative correlations in NREM and back towards positive correlations in REM. Moreover, the majority did not merely reduce magnitude, but actually either reversed and strengthened in the opposite direction, or increased in magnitude during NREM. This finding supports the notion that NREM is best expressed as having altered, rather than reduced FC. Further, as many of these functional connections comprised “higher-order” RSNs (which have been previously linked to cognition and consciousness), such as the default mode network, this finding is suggestive of possibly concomitant alterations to cognition and consciousness

    Diagnostic Developments in Differentiating Unresponsive Wakefulness Syndrome and the Minimally Conscious State

    Get PDF
    When treating patients with a disorder of consciousness (DOC), it is essential to obtain an accurate diagnosis as soon as possible to generate individualized treatment programs. However, accurately diagnosing patients with DOCs is challenging and prone to errors when differentiating patients in a Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) from those in a Minimally Conscious State (MCS). Upwards of ~40% of patients with a DOC can be misdiagnosed when specifically designed behavioral scales are not employed or improperly administered. To improve diagnostic accuracy for these patients, several important neuroimaging and electrophysiological technologies have been proposed. These include Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), and Transcranial Magnetic Stimulation (TMS). Here, we review the different ways in which these techniques can improve diagnostic differentiation between VS/UWS and MCS patients. We do so by referring to studies that were conducted within the last 10 years, which were extracted from the PubMed database. In total, 55 studies met our criteria (clinical diagnoses of VS/UWS from MCS as made by PET, fMRI, EEG and TMS- EEG tools) and were included in this review. By summarizing the promising results achieved in understanding and diagnosing these conditions, we aim to emphasize the need for more such tools to be incorporated in standard clinical practice, as well as the importance of data sharing to incentivize the community to meet these goals

    Evaluating Affordable Cranial Ultrasonography in East African Neonatal Intensive Care Units

    Get PDF
    Neuroimaging is a valuable diagnostic tool for the early detection of neonatal brain injury, but equipment and radiologic staff are expensive and unavailable to most hospitals in developing countries. We evaluated an affordable, portable ultrasound machine as a quantitative and qualitative diagnostic tool and to establish whether a novice sonographer could effectively operate the equipment and obtain clinically important information. Cranial ultrasonography was performed on term healthy, pre-term and term asphyxiated neonates in Rwandan and Kenyan hospitals. To evaluate the detection of ventriculomegaly and compression injuries, we measured the size of the lateral ventricles and corpus callosum. The images were also assessed for the presence of other cerebral abnormalities. Measurements were reliable across images, and cases of clinically relevant ventriculomegaly were detected. A novice sonographer had good-to-excellent agreement with an expert. This study demonstrates that affordable equipment and cranial ultrasound protocols can be used in low-resource settings to assess the newborn brain

    Modeling an auditory stimulated brain under altered states of consciousness using the generalized ising model

    Get PDF
    Propofol is a short-acting medication that results in decreased levels of consciousness and is used for general anesthesia. Although it is the most commonly used anesthetic in the world, much remains unknown about the mechanisms by which it induces a loss of consciousness. Characterizing anesthesia-induced alterations to brain network activity might provide a powerful framework for understanding the neural mechanisms of unconsciousness. The aim of this work was to model brain activity in healthy brains during various stages of consciousness, as induced by propofol, in the auditory paradigm. We used the generalized Ising model (GIM) to fit the empirical fMRI data of healthy subjects while they listened to an audio clip from a movie. The external stimulus (audio clip) is believed to be at least partially driving a synchronization process of the brain activity and provides a similar conscious experience in different subjects. In order to observe the common synchronization among the subjects, a novel technique called the inter subject correlation (ISC) was implemented. We showed that the GIM—modified to incorporate the naturalistic external field—was able to fit the empirical task fMRI data in the awake state, in mild sedation, in deep sedation, and in recovery, at a temperature T* which is well above the critical temperature. To our knowledge this is the first study that captures human brain activity in response to real-life external stimuli at different levels of conscious awareness using mathematical modeling. This study might be helpful in future to assess the level of consciousness of patients with disorders of consciousness and help in regaining their consciousness

    Longitudinal white matter changes associated with cognitive training

    Get PDF
    Improvements in behavior are known to be accompanied by both structural and functional changes in the brain. However, whether those changes lead to more general improvements, beyond the behavior being trained, remains a contentious issue. We investigated whether training on one of two cognitive tasks would lead to either near transfer (that is, improvements on a quantifiably similar task) or far transfer (that is, improvements on a quantifiably different task), and furthermore, if such changes did occur, what the underlying neural mechanisms might be. Healthy adults (n = 16, 15 females) trained on either a verbal inhibitory control task or a visuospatial working memory task for 4 weeks, over the course of which they received five diffusion tensor imaging scans. Two additional tasks served as measures of near and far transfer. Behaviorally, participants improved on the task that they trained on, but did not improve on cognitively similar tests (near transfer), nor cognitively dissimilar tests (far transfer). Extensive changes to white matter microstructure were observed, with verbal inhibitory control training leading to changes in a left-lateralized network of frontotemporal and occipitofrontal tracts, and visuospatial working memory training leading to changes in right-lateralized frontoparietal tracts. Very little overlap was observed in changes between the two training groups. On the basis of these results, we suggest that near and far transfer were not observed because the changes in white matter tracts associated with training on each task are almost entirely nonoverlapping with, and therefore afford no advantages for, the untrained tasks
    corecore