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a b s t r a c t 

Propofol is a short-acting medication that results in decreased levels of consciousness and is used for general 

anesthesia. Although it is the most commonly used anesthetic in the world, much remains unknown about the 

mechanisms by which it induces a loss of consciousness. Characterizing anesthesia-induced alterations to brain 

network activity might provide a powerful framework for understanding the neural mechanisms of unconscious- 

ness. 

The aim of this work was to model brain activity in healthy brains during various stages of consciousness, as 

induced by propofol, in the auditory paradigm. We used the generalized Ising model (GIM) to fit the empirical 

fMRI data of healthy subjects while they listened to an audio clip from a movie. The external stimulus (audio 

clip) is believed to be at least partially driving a synchronization process of the brain activity and provides a 

similar conscious experience in different subjects. In order to observe the common synchronization among the 

subjects, a novel technique called the inter subject correlation (ISC) was implemented. 

We showed that the GIM —modified to incorporate the naturalistic external field —was able to fit the empirical 

task fMRI data in the awake state, in mild sedation, in deep sedation, and in recovery, at a temperature T ∗ which is 

well above the critical temperature. To our knowledge this is the first study that captures human brain activity in 

response to real-life external stimuli at different levels of conscious awareness using mathematical modeling. This 

study might be helpful in future to assess the level of consciousness of patients with disorders of consciousness 

and help in regaining their consciousness. 

1. Introduction 

The brain is a complex system, characterized by heterogeneous net- 

works of structural connections supporting cognition, and which assist 

in responding to perceptual information coming from the peripheral 

nervous system. Modern neuroimaging techniques, such as fMRI and 

EEG, now permit the comprehensive mapping of these networks in order 

to understand how information is transmitted within and across them 

( Abreu et al., 2018 ). However, many aspects of the dynamical function- 

ing of the brain under stimulation and in altered states of conscious- 

ness induced by anesthetic drugs are still not completely understood 

( Hudetz, 2012 ). Using engaging stimuli that drive a specific conscious 
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experience (such as, for example, watching a movie) would make it pos- 

sible to detect whether behaviourally unresponsive patients are having 

a comparable conscious experience. 

Anesthetics generally suppress the body’s normal automatic func- 

tions, such as breathing, the heartbeat, and blood pressure, as well as 

the global cerebral metabolic rate ( Will and Berg, 2007 ). Using EEG, 

it has been shown that low-frequency, high amplitude oscillations in- 

crease as the level of anesthesia increases ( Hagihira, 2015 ). A number 

of neuroimaging studies have probed the effects of anesthesia-induced 

sedation on brain activation when exposed to various types of acous- 

tic inputs. Using propofol, a short-acting medication that results in a 

decreased level of consciousness that is widely used due to its fast in- 
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duction and recovery time ( Tobias and Leder, 2011 ), Naci et al. found a 

high cross-subject correlation between sensory-driven auditory cortex in 

higher-order frontal and parietal regions while listening to a plot-driven 

audio story while participants were conscious. During deep anesthesia, 

however, the cross-subject correlation was limited to the auditory cor- 

tex, and was almost abolished in fronto-parietal regions ( Naci et al., 

2014 ). Davis and colleagues also found that bilateral temporal-lobe re- 

sponses to complex auditorily-presented sentences were preserved when 

reduced levels of awareness were induced via propofol ( Davis et al., 

2007 ). These findings were further confirmed by Dueck et al., who pre- 

sented musical stimuli to neurosurgical patients after the injection of 

different concentrations of propofol ( Dueck et al., 2005 ). Their study 

showed activation in the superior temporal gyrus (primary and sec- 

ondary auditory cortex) and in higher-order auditory information pro- 

cessing areas while participants were awake. These activations atten- 

uated with increasing concentrations of propofol but remained par- 

tially preserved in the superior temporal gyrus. Additionally, in an au- 

ditory word listening fMRI study of functional connectivity, Liu et al. 

reported that propofol-induced sedation disrupted verbal comprehen- 

sion and memory by blocking the projection of sensory information to 

higher ‐order processing networks and thus preventing information in- 

tegration ( Liu et al., 2012 ). 

Neuroimaging techniques have allowed us to explore how the brain 

functions at different levels of consciousness, in both healthy individ- 

uals and in patients. However, there are many hypotheses that would 

be difficult or impossible to directly test using brain imaging. Computa- 

tional models allow us to simulate the brain in different states and un- 

der different conditions, allowing us to test such hypotheses. One such 

model, the Ising model developed by Ernest Ising, has been adapted 

from its traditional use in describing the behaviour of magnets to be ap- 

plied in computational neuroscience ( Fraiman et al., 2009 ; Schaub and 

Schultz, 2012 ). Spin sites capture the dynamics of the BOLD signal with 

a two-state spin variable, representing activity above and below a base- 

line. By simulating the Ising model at different temperatures, Fraiman 

et al. showed that, at the critical temperature Tc (the temperature at 

which the system exhibits a transition from an ordered phase to a disor- 

dered phase), the model can simulate the global behavior of the brain’s 

functional connectivity at rest ( Fraiman et al., 2009 ). They showed that 

the best fit to the distribution of the functional correlations of the brain 

was obtained from the simulations at the critical temperature of the 2D 

classical Ising model. 

The generalized Ising model (GIM), which was introduced by Mari- 

nazzo and colleagues ( Marinazzo et al., 2014 ), is a modification to the 

2D classical Ising model, in which spins are no longer restricted to in- 

teract with only their neighbours, but may interact with all other spins 

via differing coupling strengths ( Marinazzo et al., 2014 ). In the classical 

Ising model, spins of the lattice do not correspond to a particular region 

of the brain, however in the generalization of the Ising model, each brain 

region corresponds to a particular spin in the lattice site. Accordingly, 

the structural connectivity matrix Jij , which gives the coupling strength 

between two regions in the model, is built such that it corresponds to the 

number of white matter fibers between each pair of regions of the brain 

obtained using diffusion tensor imaging (DTI). Because we have parcel- 

lated the brain into 84 regions, Jij is an 84 × 84 matrix and the couplings 

are normalized in such a way that the highest coupling has a value of 

one. Considering this one-to-one relationship between the spin sites and 

the brain regions, this model can be used to simulate the BOLD activity 

either during resting state (spontaneous activity) or while engaged in a 

task. 

The GIM has been recently employed to simulate resting state 

fMRI ( Abeyasinghe et al., 2018 ; Das et al., 2014 ; Deco et al., 2012 ; 

Fraiman et al., 2009 ; Marinazzo et al., 2014 ; Stramaglia et al., 2017 ). Im- 

plementing the GIM on two different resolutions of structural connectiv- 

ity matrices, Marinazzo et al. showed that the total information transfer 

between the spins, defined by the Shannon entropy, was maximized at 

criticality ( Marinazzo et al., 2014 ). Further, Stramaglia and colleagues 

compared the correlations between spin sites simulated from the Ising 

model implemented on the structural connectome against the empiri- 

cal functional brain correlations both at the single link level (in which 

spin sites are flipped one at a time) and at the modular level (in which 

blocks of correlated spin sites are flipped together). They concluded that 

when the brain is under anesthesia, similarity between the model and 

empirical data increases at the modular level ( Stramaglia et al., 2017 ). 

Continuing work to optimize the GIM, Deco et al. studied the Ising 

model implemented on artificially created structural connectomes with 

different coupling strengths among the nodes ( Deco et al., 2012 ). By ex- 

amining the entropy of the system at different coupling strengths, they 

found that the system exhibited rich dynamics when the structural con- 

nections of the brain self-organized to form a scale-free network. Such 

a network is characterized by many nodes with high connections (i.e., 

hubs), following a power-law degree distribution. They are called scale- 

free, as power laws have same functional form at any scale. Finally, 

Abeyasinghe et al. ( Abeyasinghe et al., 2018 ) calculated the dimension- 

ality of the brain with respect to information transfer during wakeful- 

ness, using the GIM, and reported it to be two. In their work, dimension- 

ality was explained in terms of the reactivity of neurons to stimuli, that 

is, neurons specialized to react to certain stimuli were low dimensional, 

while neurons that react to mixed stimuli were highly dimensional. In 

order to calculate dimensionality, they introduced a concept for the dis- 

tance between two regions in the GIM to be equivalent to the inverse 

of the normalized fiber connections between the two regions (which is 

relevant to the information transfer), as there is no direct measure to 

calculate the distance between the two regions in the GIM. 

The goal of the present study was to provide an initial step to see 

if the GIM can be applied to assess the common neural experience a 

behaviourally non responsive patient might have. To do this, we mod- 

elled the brain activity of healthy subjects using the GIM implemented 

on the structural architecture, in altered states of consciousness, while 

receiving a naturalistic external stimulus. We predicted that the brain- 

behaviour response to naturalistic stimuli would be more complex to 

model compared to stimuli presented in a block design. This study in 

future might provide an alternative way to measure the awareness of a 

non-responsive patient and help in restoring their consciousness. 

2. Methodology 

The data of 17 healthy subjects were acquired while participants 

were listening to the audio clip (task condition) as well as while they 

were at rest, at four levels of sedation. Data were then preprocessed and 

parcellated into 84 regions of interest (ROIs), and the empirical time 

series of each ROI was extracted. The GIM was then simulated at dif- 

ferent temperatures under resting and task conditions, and simulated 

time series were obtained. Empirical and simulated inter-subject corre- 

lations were calculated using the respective time series, and they were 

then compared to find the temperature that led to the highest degree of 

similarity. Details of each step are given below. 

2.1. Participants 

17 healthy volunteers (4 women; mean age 24 years, SD = 5) partic- 

ipated in this study. All were right-handed, native English speakers, and 

had no history of neurological disorders, and were recruited via printed 

advertisements posted on the university campus and through word of 

mouth. All volunteers provided informed consent after completing an 

MRI and propofol safety screening questionnaire provided by both the 

attending MR technician and anesthesiologist, to confirm that they un- 

derstood study risks and did not have any contraindications for MRI or 

sedation. Volunteers were remunerated for their time. Ethical approval 

was obtained from the Health Sciences Research Ethics Board and Psy- 

chology Research Ethics Board of Western University (REB #104,755). 
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2.2. Task Protocol 

FMRI scans were acquired while participants listened to the audio 

story in four states of consciousness: awake, mild sedation, deep seda- 

tion, and recovery. The audio story was played at the start of each ses- 

sion once the wakefulness/sedation level was assessed. The audio story 

was 5 min in duration and was an excerpt from a scene of the movie 

‘Taken’ (reported in Naci et al., 2015) that portrays a teenage girl being 

kidnapped ( Naci et al., 2017 ). This audio story was chosen because it is 

richly evocative and highly arousing as well. The study was approved 

by the ethics committee of the Health Sciences Research Ethics Board 

and Psychology Research Ethics Board of the University of Western On- 

tario. Written informed consent to participate in the study was obtained 

from the subjects. The data used in this study will be available in Open- 

neuro.org. 

2.3. Administration of propofol 

Before entering the fMRI scanner, a 20 G i.v. cannula was inserted 

into a vein on the dorsum of the non-dominant hand of the participants. 

The propofol infusion system was connected to the cannula prior to the 

first scanning session. Intravenous propofol was administered with a 

Baxter AS 50 (Singapore). An effect-site/plasma steering algorithm was 

used in combination with the computer-controlled infusion pump to 

achieve step-wise increments in the sedative effect of propofol. The infu- 

sion pump was adjusted to achieve the desired level of sedation, guided 

by targeted concentrations of propofol, as predicted by the TIVATrainer 

(the European Society for Intravenous Aneaesthesia, eurosiva.eu) phar- 

macokinetic simulation program. The pharmacokinetic model provided 

target-controlled infusion by adjusting infusion rates of propofol over 

time to achieve and maintain the target blood concentrations as spec- 

ified by the Marsh 3 ( Marsh et al., 1991 ) compartment algorithm for 

each participant, as incorporated in the TIVATrainer software. 

The four states of consciousness were defined as follows. 1) Awake : 

No propofol was administered during the “awake ” session. During the 

awake scan, prior to the administration of propofol, participants were 

fully awake, alert, and communicating appropriately. 2) Mild seda- 

tion : At the beginning of the mild sedation scan, propofol infusion com- 

menced with a target effect-site concentration of 0.6 μg/ml and oxygen 

was titrated to maintain SpO 2 above 96%. Once the baseline target 

effect-site concentration was reached, the participants’ level of sedation 

was assessed and if deemed to be appropriate for mild sedation (Ramsey 

3), the effect-site concentration was maintained. During administration 

of propofol, participants became calmer and more slowed in their re- 

sponse to verbal communication. Once participants stopped engaging 

in spontaneous conversation, and speech became sluggish, they were 

classified as a Ramsey level 3 and were considered mildly sedated. At 

this level, participants only responded to loud commands. 3) Deep se- 

dation : Prior to commencing the deep sedation scan, the target effect- 

site concentration was again increased in increments of 0.3 μg/ml with 

repeated assessments of responsiveness. Once a Ramsey 5 level of seda- 

tion was achieved, no further changes were made, and the participant 

was maintained at that level. When participants stopped responding to 

verbal commands and were only rousable to light physical stimulation, 

they were considered Ramsey level 5 and deeply sedated. Patients were 

unable to engage in conversation at this level. At Ramsay 5, participants 

remained capable of spontaneous cardiovascular function and ventila- 

tion. 4) Recovery : Propofol was discontinued following the deep seda- 

tion scan and approximately 11 min following the discontinuation of 

propofol, participants reached Ramsey level 2. This was observed by 

clear and quick responses to verbal commands. 

The mean estimated effect-site propofol concentration was 2.48 

(1.82–3.14) μg/ml, and the mean estimated plasma propofol concentra- 

tion was 2.68 (1.92–3.44) μg/ml. Mean total mass of propofol admin- 

istered was 486.58 (373.30–599.86) mg. The variability of these con- 

centrations and doses is typical for studies of the pharmacokinetics and 

pharmacodynamics of propofol ( Nimmo et al., 2019 ; Sukumar et al., 

2018 ). 

2.4. Sedation Assessment 

Prior to acquiring fMRI data, three independent assessors (two anes- 

thesiologists and one anesthesia nurse) evaluated each participant’s 

Ramsay level by communicating with them in person inside the fMRI 

scanner room. Participants were also asked to perform a basic verbal 

recall memory test and a computerized (4 min) auditory target detec- 

tion task, which further assessed each individual’s wakefulness/sedation 

level independently of the anesthesia team. Scanning commenced only 

when the agreement among the three anesthesia assessors on the wake- 

fulness/sedation level was confirmed. 

2.5. fMRI Data acquisition 

Noise cancellation headphones (Sensimetrics, S14; www.sens.com ) 

were used for sound delivery at a volume level deemed comfortable 

by each individual for the duration of the experiment. Functional echo- 

planar images were acquired (33 slices, voxel size: 3 × 3 × 3 mm 

3 , inter- 

slice gap of 25%, TR = 2000 ms, TE = 30 ms, matrix size = 64 × 64, 

FA = 75°). The audio story and resting state scans had 155 and 256 

vol, respectively. An anatomical scan was obtained using a T1-weighted 

3D MPRAGE (Magnetization Prepared - RApid Gradient Echo) sequence 

(32 channel coil, voxel size: 1 × 1 × 1 mm 

3 , TE = 4.25 ms, matrix 

size = 240 × 256 × 192, FA = 9°). 

2.6. Preprocessing of fMRI data 

T1 images were preprocessed using the SPM 

(http: www.fil.ion.ucl.ac.uk/spm ), FSL ( https://fsl.fmrib.ox.ac.uk/fsl/ 

fslwiki/ ), SimpleITK ( http://www.simpleitk.org/ ) and Dipy ( http:// 

nipy.org/dipy/ ) toolboxes. T1 preprocessing included manual removal 

of the neck, brain extraction using FSL, correction of low-frequency 

intensity non-uniformity based on the N4 (non-parametric non-uniform 

normalization) bias field correction algorithm from SimpleITK, im- 

age denoising based on non-local means algorithm from Dipy, and 

spatial normalization to standard stereotactic Montreal Neurological 

Institute (MNI) space using the SPM12 normalization algorithm. The 

initial three volumes of the fMRI data were discarded to avoid T1 

saturation effects. Head motion and slice timing corrections were 

performed on the fMRI data using FSL, followed by artifact correction 

using RapidArt ( https://www.nitrc.org/projects/rapidart/ ). Subse- 

quently, fMRI data were coregistered to a T1 image using SPM12 

(http: www.fil.ion.ucl.ac.uk/spm ) and spatially normalized to MNI 

space using the SPM12 normalization algorithm. Finally, spatial 

smoothing of the fMRI data was performed with a Gaussian kernel of 

8 mm full-width at half maximum as implemented in SPM12. 

2.7. fMRI Signal extraction based on parcellation 

First, the average time series of each region inside the AAL2 par- 

cellation ( Hagmann et al., 2008 ) scheme ( http://www.gin.cnrs.fr/en/ 

tools/aal-aal2/ ) was extracted. The extracted time series were then 

cleaned by removing spurious variance via the regression of nuisance 

waveforms derived from the average time series obtained from regions 

of non-interest (white matter and cerebrospinal fluid). This nuisance re- 

gressor also included six motion parameters (translation and rotation 

parameters in the x, y, and z dimensions) from a rigid body transfor- 

mation previously estimated using FSL. Finally, the time series were 

detrended, filtered using a bandpass with a Butterworth filter of cut-off

frequencies set at 0.01 Hz and 0.1 Hz, and standardized to have zero 

mean and unit variance across time. 

http://www.sens.com
http://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://www.simpleitk.org/
http://nipy.org/dipy/
https://www.nitrc.org/projects/rapidart/
http://www.fil.ion.ucl.ac.uk/spm
http://www.gin.cnrs.fr/en/tools/aal-aal2/
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2.8. Extraction of features from the audio clip 

The spins of the GIM were coupled with the external field (i.e., the 

audio clip) via different coupling strengths. The coupling strengths were 

obtained by performing a general linear model (GLM) between the audio 

clip and the time series, using the audio clip as the independent vari- 

able and the time series of each region as the dependent variables. The 

coefficients calculated from the GLM represented the coupling strengths 

of each spin with the external field. Using the combination of the cou- 

pling strengths and the audio clip as the external stimulus, the GIM was 

simulated. However, the inter-subject correlation (will be discussed in 

Section 2.9 ) calculated from the simulated data was not able to fit the 

inter-subject correlation calculated from the empirical data at any tem- 

peratures. Therefore, more meaningful time and frequency domain fea- 

tures were extracted from the audio clip to simulate the GIM as follows. 

The audio clip was sampled at 44.1 kHz for a duration of 5 min. 

Twenty-one audio features from both the time and frequency do- 

mains were extracted from the original audio clip using the software 

pyAudioAnalysis ( https://github.com/tyiannak/pyAudioAnalysis/ ) 

( Giannakopoulos, 2015 ). In this extraction we only considered the 

audio features relevant in describing an engaging scene of a movie. 

Therefore, we did not extract other features which describe the melodic 

characteristics of music such as the chroma vector or chroma deviation, 

obtained from this pyAudioAnalysis software. The three time-domain 

features were: zero crossing rate (rate of sign changes along a signal), 

energy (sum of squares of the signal values, normalized by the respec- 

tive frame length) and entropy of energy (measure of abrupt changes), 

which were directly extracted from the raw signal samples. The eigh- 

teen remaining features were in the frequency domain, obtained from 

the Fourier transform of the audio signal, and consisted of spectral 

centroid (center of gravity of the spectrum), spectral spread (second 

central moment of the spectrum), spectral entropy (entropy of the 

normalized spectral energies for a set of sub-frames), spectral flux (the 

squared difference between the normalized magnitudes of the spectra of 

the two successive frames), spectral roll off (the frequency below which 

90% of the magnitude distribution of the spectrum is concentrated) and 

thirteen Mel frequency cepstral coefficients (MFCCs). MFCCs are coef- 

ficients that collectively make up a Mel frequency spectrum and offer a 

description of the spectral shape of the sound ( Giannakopoulos, 2015 ). 

Here, the frequency bands are positioned logarithmically (on the Mel 

scale), which more closely approximates the human auditory system’s 

perceived response or pitch than do the linearly-spaced frequency 

bands. The audio signal was divided into time frames with lengths of 

two seconds without overlap, to match the repetition time of the fMRI 

data, and the above-mentioned audio features were extracted using the 

average of each frame. Finally, a multicollinearity test was performed 

on these 21 extracted features after they were normalized between − 1 

and 1, using a function called “variation inflation factor ” implemented 

in RStudio. This function determined that three features had higher 

collinearity and could therefore be removed, while the remaining 18 

features were used in the generalized linear modelling. 

2.9. Inter-Subject Correlation 

Inter-Subject Correlation (ISC) has been used previously to exam- 

ine highly complex fMRI data acquired during naturalistic stimulation, 

such as when watching a movie ( Hasson et al., 2004 ; Kauppi et al., 

2010 ; Pajula et al., 2012 ). ISC measures the common neural activity 

present across subjects by comparing their neural response time series 

over the course of the naturalistic stimulation. The main advantage of 

ISC analysis over conventional fMRI analysis is that it does not require 

a priori knowledge of the external stimulus to locate activated brain ar- 

eas. In ISC analysis, the subject’s brain response to naturalistic stimuli is 

used to predict the brain responses within other subjects. Therefore, it 

is a model-free approach and is useful in measuring the synchronization 

across brains, induced by the real-life stimulus. 

Here, in order to calculate the ISC of the empirical data, the time 

series from each ROI was initially extracted from the preprocessed fMRI 

data using the method described in Sections 2.6 and 2.7 , and normalized 

such that the highest value was ± 1. Pearson correlations between every 

pair of subjects were calculated for each ROI using the formulae given 

in Eq. (1) and then averaged ( ̄𝑟 ) over the number of pairs using Eq. (2) . 

𝑟 𝑖𝑗 = 

∑𝑁 

𝑛 =1 

[(
𝑆 𝑖 [ 𝑛 ] − 𝑆 𝑖 

)(
𝑆 𝑗 [ 𝑛 ] − 𝑆 𝑗 

)]
√ ∑𝑁 

𝑛 =1 

(
𝑆 𝑖 [ 𝑛 ] − 𝑆 𝑖 

)2 ∑𝑁 

𝑛 =1 

(
𝑆 𝑗 [ 𝑛 ] − 𝑆 𝑗 

)2 
(1) 

𝑟̄ = 

1 (
𝑚 2 − 𝑚 

2 

) 𝑚 ∑
𝑖 =1 

𝑚 ∑
𝑗 =2 ,𝑗 >𝑖 

𝑟 𝑖𝑗 (2) 

where r ij is the correlation coefficient between the time series of the i t h 

and j th subjects, N is the total number of samples in the time series, S i 
and S j are the time series obtained from i t h and j th subjects, respectively, 

𝑆 𝑖 and 𝑆 𝑗 denote the means of S i and S j and m is the total number of 

subjects (in our case, m = 17). Then, in order to test for the statistical 

significance of 𝑟̄ , null re-sampling distribution was generated by circu- 

larly shifting the time series of each subjects by a random number. Then 

the re-sampled r ij values were calculated. Afterwards, a t -test between 

the distributions of the original r ij values and the re-sampled r ij values 

of each ROI was performed. Results of the t -tests were Bonferroni cor- 

rected for multiple comparisons ( McDonald, 2009 ) with a significance 

level of p < 0.01 to acquire only the significant 𝑟̄ -values. The ISC of the 

resting and task data was calculated for all four levels of consciousness, 

and plotted on a brain map using MATLAB. 

2.10. Generalized Linear modelling 

Generalized Linear Modelling (GLM) coefficients were used as an in- 

put to simulate the GIM. GLM was performed using the 18 audio features 

( P(t) ) that survived the multicollinearity test as the independent vari- 

ables, and the empirical time series as the dependent variable to obtain 

the coefficients. The coefficients represent the coupling of the external 

stimulus with the spin sites and we refer to the collective coefficients 

(84 in our case) of all the ROIs as the ẞ-map. The GLM was repeated 

on all subjects’ empirical data to obtain their ẞ-maps for each audio 

features. A one-sample t -test was then performed on the audio features 

using the subjects’ ẞ-maps to obtain the t -scalar maps for each audio 

features. Only those t -values possessing a p < 0.01 were used to gener- 

ate the external stimulus to be used in the GIM. The external stimulus 

for each condition (awake, mild sedation, deep sedation, recovery) was 

calculated via Eq. (3) : 

𝐻 𝑖 ( 𝑡 ) = 

𝑁𝑝 ∑
𝑘 =0 

𝑃 𝑘 ( 𝑡 ) 𝑡 𝑘 
𝑖 

(3) 

where H i ( t ) is the external stimulus applied onto i th region, Np is the 

total number of predictors ( = 18 in our case), 𝑡 𝑘 
𝑖 

is the threshold t -value 

of the region i for the k th predictor, obtained from the t -test among the 

ẞ-values, P k ( t ) is the time series of the k th predictor and 𝑃 0 = 1 . This 

H i (t) was then used as the external stimulus while simulating the GIM. 

2.11. Generalized Ising model simulation 

The GIM used an initial 1-D random spin configuration with 84 spins 

in either the + 1 or − 1 state, and was in contact with a thermal bath of 

temperature T . The energy of the spin configuration during spontaneous 

activity (resting) and non-spontaneous activity (with external stimulus) 

are given by Eqs. (4) and (5) , respectively: 

𝐸 𝑟𝑒𝑠𝑡 = − 

𝑁 ∑
𝑖,𝑗; 𝑖 ≠𝑗 

𝐽 𝑖𝑗 𝑠 𝑖 𝑠 𝑗 (4) 

𝐸 𝑠𝑡𝑖𝑚 = − 

𝑁 ∑
𝑖,𝑗; 𝑖 ≠𝑗 

𝐽 𝑖𝑗 𝑠 𝑖 𝑠 𝑗 − 

𝑁 ∑
𝑖 

𝐻 𝑖 ( 𝑡 ) 𝑠 𝑖 (5) 

https://github.com/tyiannak/pyAudioAnalysis/
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where J ij is the coupling constant between the i th and the j th site (i.e., 

the number of fibers connecting two regions, normalized between 0 and 

1), S i and S j are the spins of the i th and j th site, and N ( = 84) is the to- 

tal number of spin sites. The J ij was obtained from the averaged DTI 

data of 69 subjects from the Human Connectome Project. The Metropo- 

lis Monte Carlo (MMC) algorithm was employed to simulate the system. 

In order to minimize the energy of the spin configuration using the MMC 

algorithm, the following steps were performed: 1. A random initial con- 

figuration with 84 spins was generated and the initial energy (E in ) was 

calculated. 2. A randomly selected spin was flipped, and the new en- 

ergy (E new 

) was calculated. 3. If E new < E in , the spin flip was accepted, 

the new configuration became the new initial configuration with energy 

E in = E new 

, and the simulation was continued from step 2. 4. If E new > 

E in , the Boltzmann factor 𝐵 = 𝑒𝑥 𝑝 
− Δ𝐸 

𝑘 𝐵 𝑇 was calculated and a random 

number r between 0 and 1 was drawn. If B > r , the spin was accepted, 

E in was replaced with E new , and the procedure was repeated from step 

2. Alternatively, if B < r , the flip was rejected, and the simulation was 

started over from step 2. These simulations were repeated from step 

2 until an equilibrium condition with minimal fluctuations around the 

equilibrium energy was reached. Once the system was allowed to equili- 

brate, the equilibrium energy ( E ), magnetization ( M ) and susceptibility 

( 𝜒) were calculated using Eqs. (4) –(7) : 

𝑀 = 

1 
𝑁 

| 𝑁 ∑
𝑖 =1 

𝑆 𝑖 | (6) 

𝜒 = 

1 
𝑁𝑇 

[
𝑀 

2 − 𝑀 

2 ] (7) 

Simulation for one time-point in the GIM was considered equiva- 

lent after N x N x 10 (where N is the number of spins) number of flips 

had been performed. Previous work has empirically shown that with 

this number of steps, equilibrium will be reached and therefore the 

thermodynamic properties can be calculated ( Abeyasinghe et al., 2018 ; 

Fraiman et al., 2009 ). The time taken to perform this number of spin 

flips was considered to be equivalent to 2 s (one time-point) of the au- 

dio clip, as TR = 2 s. By repeating these steps to equal number of time 

points of fMRI data, each time confirming the equilibrium condition, the 

simulated time series were obtained. 

The GIM was simulated for the resting ( H(t) = 0) and task conditions 

( H(t) ≠ 0) using the external stimulus H(t) described in Section 2.10 . 

This procedure was repeated for 250 different temperatures ranging 

from 0.025 to 6 (unit-less), and at each temperature, the thermody- 

namic properties such as the energy, magnetization and susceptibility 

were calculated. The simulations were performed 17 times, using dif- 

ferent initial configurations to resemble 17 subjects, for all four levels 

of consciousness. Next, assuming that the temperature across the sub- 

jects was identical, the ISC was calculated on the generated time series 

for each of the 250 temperatures. The ISC maps calculated from the 

simulated time series were then plotted at the critical temperature (the 

temperature that maximized susceptibility), and the temperature that 

minimized the distance between the empirical and simulated ISC (i.e., 

the temperature that gave the best fit between the empirical and sim- 

ulated ISC) which was calculated using Kolmogrove-Smirnov test (KS- 

test) statistic. The temperature at which this happens was considered as 

our best fit between the empirical and simulated ISC. 

The null distribution for the ISC was generated in two ways; 1) by 

randomly permuting the J ij and simulating the GIM using the same cou- 

pling terms 2) by randomly permuting the coupling terms and simulat- 

ing the GIM using the un-permuted j ij . Then, to look at the effects in 

the ISC due to the alterations in both j ij and coupling terms, Pearson 

correlation coefficients between the empirical ISC and simulated ISC at 

T ∗ were obtained. 

3. Results 

Fig. 1 shows the ISC obtained from the empirical data for all four 

levels of consciousness, while the subjects were listening to the audio 

clip. Overall, a clear pattern of synchronization, which decreased with 

levels of unconsciousness and increased during the recovery stage was 

seen, consistent with what has been found previously ( Boveroux et al., 

2010 ; Jordan et al., 2013 ). In the awake condition, synchronization 

amongst participants’ brain activity in the fronto-parietal, auditory, and 

language areas was observed. Synchronization amongst participants in 

the frontal-parietal area diminished in the mild and deep sedation con- 

ditions, but returned back to its original level during recovery. How- 

ever, synchronization in the auditory regions remained during uncon- 

sciousness, with lower values, similar to results found in prior stud- 

ies ( Naci et al., 2018 ). In contrast, synchronization amongst partici- 

pants’ brain regions was not observed at any levels of consciousness 

during the resting conditions (i.e., when not listening to the audio 

clip). 

Results obtained from the GIM simulations using the empirical data 

are presented in the following sections. Fig. 2 displays the variation of 

the thermodynamic properties during rest and under stimulation for se- 

dated and non-sedated conditions. Plotted values are the mean of 17 

simulations along with their standard deviations. The standard devia- 

tion at rest is very small and cannot be seen in the plots. 

Critical temperatures in each condition were obtained using the max- 

imum of the susceptibility curves shown in Fig. 2 and are plotted in 

Fig. 3 . Overall, the critical temperature during stimulation shifted to- 

wards lower temperature values compared to the resting condition. Dur- 

ing stimulation, the critical temperatures increased from awake to mild 

sedation, and further increased from mild to deep sedation; it then de- 

creased during recovery and reached similar critical value as that of the 

awake state. However, during all four levels of consciousness, the criti- 

cal temperature at rest remained the same at a value of 1.41. At rest, Tc 

did not change, as it depended only upon the input J ij . In contrast, under 

stimulation, while we used the same Jij for all levels of consciousness we 

derived different t -maps to model the modulation of the anaesthetic on 

the different brain regions’ interaction with the external field. Because 

Tc depends on both the structural connectivity ( Jij ) and the interaction 

of the spins with the external field, a change in Tc was observed for 

different levels of consciousness. 

Fig. 4 depicts the distance between the normalized empirical and 

simulated ISC for the task data, calculated using the KS-test. The sub 

criticality ( T < Tc ), super criticality ( T > Tc ), and T min (the temperature 

that minimizes the distance between the correlation matrices of empiri- 

cal and simulated data) values are defined as published in Abeyasinghe 

et al. ( Abeyasinghe et al., 2018 ). The criticality ( Tc ) is far lower than 

T ∗ , the temperature that minimizes the distance between the empirical 

and simulated ISC. From the results, we can conclude that in order to 

reach T ∗ , the system should be in a super critical state. 

Normalized eighteen audio features extracted from the 5-minute au- 

dio clip of the movie “Taken ” using pyAudio Analysis, along with the 

intensity of the original audio clip is shown in Appendix A. These au- 

dio features were then used in the GLM to calculate the ẞ-values and 

then finally the t- maps (Appendix B). From the Appendix B, it can be 

seen that some of the MFFCs (P8, P9, P11, P13) are properly captur- 

ing the auditory perception at each level of consciousness which was 

observed in the empirical data (Appendix B). MFCCs are frequency- 

smoothed log-magnitude spectra derived from a sinusoidal-based ex- 

pansion of the energy spectrum, and demonstrate good representation 

of speech signals or of human hearing. These coefficients suppress unde- 

sirable spectral variation, particularly at higher frequencies, and there- 

fore may be capturing useful acoustic properties related to auditory 

perception. 

The ISC calculated from the simulated data under auditory stimu- 

lation using the GIM in the awake, mild sedation, deep sedation, and 

recovery conditions are displayed in Fig 5 . At all four levels of con- 

sciousness, at criticality the ISC increases, but at a temperature distant 

from criticality in the super critical regime ( T ∗ ), the ISC of the simu- 

lated data closely resembled that of the empirical data. In the awake 

state, the primary auditory, frontal, and language regions synchronized 

in the empirical data are again synchronized at T ∗ . Moreover at T ∗ there 
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Fig. 1. ISC calculated from the empirical task data at four different levels of consciousness. 

were regions that showed synchronization among subjects that was not 

present in the empirical data. For example, in the simulated data, a para- 

doxical effect of an increase in synchronization was seen in the motor 

area of the left hemisphere during mild sedation and a synchronization 

in the right inferior parietal in deep sedation. Further the correlation be- 

tween the empirical ISC and simulated ISC maps at T ∗ for awake, mild 

sedation, deep sedation and recovery were 0.80, 0.87, 0.61 and 0.83 

respectively. 

When the GIM was simulated using the permuted J ij, and permuted 

coupling strengths obtained from the task condition, the temperature 

at which the best fit between the empirical and simulated ISC ( T ∗ ) var- 

ied from the original values, i.e. before permuting the J ij and coupling 

terms. Correlation values calculated between the empirical ISC and sim- 

ulated ISC at T ∗ in different conditions is shown in Table 1 . It can be 

seen that, in all conditions, permuting beta values highly reduced the 

correlation values, while permuting the J ij did not change much the cor- 

relation values. These results indicate that although a contribution from 

the j ij is seen in the ISC, the majority of the contribution comes from the 

coupling terms between the spins and the external field. Ideally hav- 

ing the scrambled data would have permitted to test the null distribu- 

tion accurately using different coupling strengths obtained from these 

data. 

4. Discussion 

FMRI studies indicate that neuronal responses are more ecologi- 

cally valid under naturalistic conditions than under conventional labo- 

ratory conditions using artificial stimuli ( Hasson et al., 2010 ). Natural- 

istic paradigms, with the aid of engaging movies or narratives, capture 

and sustain attention more easily than artificial stimuli or task designs 

( Naci et al., 2014 ). Therefore, we investigated the capability of the GIM 

to fit fMRI data obtained during a naturalistic audio listening task at 

different levels of consciousness as induced by propofol. The GIM was 

simulated using the Metropolis Monte Carlo algorithm to obtain equilib- 

rium spin configurations when an external stimulus (i.e. an audio clip) 

was applied, and the ISC at different temperatures was calculated to find 

the best fit to the empirical ISC. 

Primary auditory, language, and the fronto-parietal regions belong- 

ing to the executive control network appear to have strong ISC amongst 

the participants during the awake and recovery states ( Fig. 1 , 5 ). These 

ISC values diminish during sedation in the empirical and simulated task 

data. However, in the sedated condition, ISC was present only in pri- 

mary auditory regions but with smaller values. This is consistent with 

these regions’ roles in auditory perception and processing external in- 

formation from the environment, such as listening to a story. Previous 
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Fig. 2. Thermodynamic properties, a) Magnetization b) Energy c) Susceptibility calculated from the GIM during resting and under stimulation at four different levels 

of consciousness. The dashed lines represent the critical temperatures. 

Table 1 

Correlation values calculated between the empirical ISC and simulated ISC at T ∗ 

before and after permuting J ij and beta values. 

Awake Mild Sedation Deep Sedation Recovery 

J ij and beta 0.782 ± 0.001 0.855 ± 0.002 0.625 ± 0.005 0.825 ± 0.003 

Permuted J ij 0.784 ± 0.002 0.865 ± 0.001 0.583 ± 0.005 0.784 ± 0.002 

Permuted beta − 0.055 ± 0.003 0.069 ± 0.004 − 0.101 ± 0.006 0.113 ± 0.004 

∗ standard deviation was calculated based on the leave one procedure, in which 

each time one subject’s ISC is removed and the mean over the remainder is calculated. 

studies have shown decreased activity in the fronto-parietal network of 

anesthetized brains ( Boly et al., 2012 ; Naci et al., 2018 ). Loss of in- 

formation processing in the fronto-parietal regions reveals that complex 

auditory processing in the higher-order networks —such as the executive 

control network —is suppressed, but with a reduced amount of process- 

ing in the lower-order networks —such as the auditory network —during 

unconsciousness. 

When the brain is auditorily stimulated in the real world, some fea- 

tures of the audio signal negatively couple to certain regions of the brain, 

while other features positively couple with certain brain regions. This, 

in turn, moves the system towards a disordered state, shifting the crit- 

icality to a lower value as seen in Fig. 2 . This may allow the brain to 

engage only on the necessary regions, and to respond to external stim- 

ulation in an effective way. In this case, external stimulation does not 

behave as a source of order —aligning all the spins in the system in one 

direction —but appears to behave as a source of disorder. 

Under stimulation, critical temperatures during unconsciousness 

(i.e., deep sedation) moved closer to the spontaneous criticality; and, 
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Fig. 3. Critical temperature variation during resting and un- 

der stimulation at four different levels of consciousness. 

conversely, when participants were conscious, they moved away from 

spontaneous criticality toward a lower temperature ( Fig. 3 ). When the 

external stimulus was presented during deep sedation, the system was 

less affected, and therefore remained closer to the spontaneous criti- 

cality, due to the low coupling strengths of the spins with the external 

stimulus. This is because the t -values were small and, therefore, the sys- 

tem resembled spontaneous activity, having a critical value significantly 

closer to that of the spontaneous situation ( Fig. 3 ). On the other hand, 

t -values were bigger while participants were under stimulation while 

awake or in recovery, and therefore pushed the system further away 

from spontaneous criticality, as depicted in Fig. 3 . The effect of the au- 

dio clip on the awake and recovery states was stronger than in the deep 

anesthesia state, and the criticality can be considered a measure of the 

engagement in the story. 

Fraimann et al. ( Fraiman et al., 2009 ) had stated that the brain func- 

tions at criticality during wakeful rest. However, an ongoing debate con- 

cerns whether the brain does indeed function at criticality, and some 

controversial results were reported by Bédard et al. ( Bedard et al., 2006 ), 

and Dehghani et al. ( Dehghani et al., 2012 ), using recordings in animals 

and humans. They had performed avalanche dynamics studies on hu- 

mans, cats and monkeys using EEG, and reported a lack of power-law 

scaling, a characteristic of critical behavior, in both awake and sleep 

states. Our results indicate that when an external stimulus is applied, 

dynamics show a departure from criticality towards the super-critical 

state as observed in Fig. 4 . Temperature was used as a fitting parameter 

in order to match conditions in the real brain. Here, the T ∗ does not only 

depend on the input J ij , but also depends on how the external stimulus 

couples with the spins. At rest, Tc is a good approximation and T ∗ does 

not move much away from Tc , as there is no ISC. But under stimulation, 

the ISC constrains the model and T ∗ moves away from Tc to a higher 

temperature. 

In the Ising model, temperature ( T ) acts like a thresholding mecha- 

nism to maximize the ISC between empirical and simulated data. As T 

is increased, spins that are mildly coupled with the external field lose 

their coupling, because the thermal energy provided by the temperature 

overcomes the interaction between the spins and the external field. This 

reduces synchronization amongst participants. However, spins that are 

strongly coupled with the audio clip, for example spins corresponding 

to auditory regions, still retain their coupling with the field despite the 

increase in temperature. At Tc , most of the spins are coupled with the 

external field, producing a high level of synchronization on all spins 

amongst participants, which is not reflective of the empirical data. But 

at T ∗ , only the necessary spins are coupled to the external field, while 

the other spins are decoupled with the external field. This leads to syn- 

chronization in the necessary regions giving the best match with the 

empirical data. In all four conditions under stimulation, it became nec- 

essary to move away from criticality into the super-critical state to find 

the best match with the empirical task fMRI data ( Fig. 4 ). 

An increase in brain activity due to stimulation changes the sensi- 

tivity of neuronal inputs and, therefore, the brain may be dynamically 

moved into different states ( Hesse and Gross, 2014 ) and also may be 

confined ( Ponce-Alvarez et al., 2015 ) to adapt brain functions of mo- 

mentary demands. Moreover, some studies have proposed that an ex- 

ternal time-varying input may give rise to power-law avalanche distri- 

butions, and the larger networks can be restored when the avalanches 

within the modules are further pushed into the supercritical regime 

( Dahmen et al., 2019 ). When the brain is exposed to a significant level of 

external input, self-tuning mechanisms of the brain might try to regulate 

the activity down. This will make the system to depart from criticality, 

in which the internally generated dynamics was optimized ( Hesse and 

Gross, 2014 ). 

The GIM with an external field combined with the novel ISC tech- 

nique could provide an alternative way to measure the level of aware- 

ness of patients with different neuropathological conditions or even in 

non-responsive patients. In order to assess the awareness of these pa- 

tients, ISC (which is a measure used in this study to calculate the con- 

scious experience) should be calculated. To attain this goal, the audio 

clip from the same movie should be played for patients and fMRI data 

should be acquired. Then GLM should be applied on the fMRI time 

series by using as predictors the features of the movie (explained in 

Section 2.10 ) to obtain the coupling strengths (interaction of the ex- 

ternal field with the spins). Afterwards, using disrupted structural con- 

nectivities ( J ij ) of these patients and the extracted coupling strengths, 

GIM should be simulated to obtain the simulated time series at the tem- 

perature T ∗ which was previously obtained from the healthy subjects’ 

simulations. The ISC map (set of ISC values of each ROI) of each patient 

can then be obtained by calculating the correlation values between the 

subject’s time series with all the 17 healthy subjects’ time series and av- 

eraging them. These ISC values will give us an idea of how much the 

patient’s time series is correlated with the healthy subjects time series. 
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Fig. 4. Distance (calculated using the KS-test) between the empirical and simulated ISC under stimulation, at four different levels of consciousness. The red line 

represents the temperature that minimized distance between empirical and simulated ISC. Magenta, green dashed, and blue dashed lines represent the critical, 

sub, and super, critical temperatures, respectively, under stimulation. The orange line ( Tmin ) represents the temperature that minimizes the distance between the 

empirical and simulated correlation matrices. 

Then the statistical significance of the ISC values of the patients can 

be tested vs the null distribution created from the ISC of healthy sub- 

jects. The main advantage of using the GIM is that it can be simulated 

using the structural connectivity and coupling strengths of these patients 

which hypothetically can be altered, until a similar ISC, or conscious 

experience, to the healthy controls is obtained, simulating a possible 

healing process. The simulations on these patients will depend mainly 

on the interaction of the patients with the external stimulus while a 

minor contribution arises from the structural connectivity as well. Cou- 

pling strengths can be assumed to be related with the metabolic activ- 

ity. Astrocytes, are cells in the neuronal system which provide structural 

and functional support to the neurons and also assist in controlling the 

metabolic activity, by regulating the blood flow to regions of the brain. 

Inflammation in these astrocytes tend to inhibit the blood flow, resulting 

in reduction of metabolic activity. Treating these inflamed astrocytes, 

might help to re-gain the metabolic activity which in our model will 

correspond to increase the coupling strengths. Specifically for disorders 

of consciousness patients, according to our model, it will be more rel- 

evant to restore the metabolic activity than the fibers, which in turn 

will restore the interaction of the external stimulation with the brain 

regions. 

5. Limitations of the study 

The main limitation of the study is that we used the fMRI data itself 

to extract the beta maps. These beta maps were then used to simulate 

the Ising model to fit the empirical data. Beta maps tell us how the 

profile of an audio clip will couple to specific regions and which should 

be universally independent of the audio clip. In the future, using the 

beta maps extracted from one audio stimulation (audio clip of a movie) 

to predict the ISC for different audio stimulations would provide better 

predictive power. 

Another limitation of the study is that the model is unable to provide 

a proper ISC when the external field is only coupled to the primary au- 

ditory regions. In the stimulated scenario, more than the structural con- 

nectivity, it is the coupling between the stimulus and the brain regions 

which is more dominant in the model. A very successful model should 

be able to provide proper ISC, by just coupling the external magnetic 

field to the primary auditory regions, instead of the full brain. Future 

research should test the possibility of coupling the external field to pri- 

mary auditory regions only, while giving different weights to J ij . This 

would modulate the effective structure for the fiber connectome, taking 

in to account that the regions of different networks interact differently. 
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Fig. 5. ISC calculated from the simulated task data at the critical ( Tc ) and at the temperature that minimized the distance between the ISC of the empirical and 

simulated data ( T ∗ ) during awake, mild sedation, deep sedation and recovery. 

This would favor the coupling of regions between certain networks with 

respect to others. 

6. Conclusion 

The GIM was able to model brain activity under naturalistic stimu- 

lation, at different levels of consciousness, using a novel ISC technique. 

At the temperature T ∗ , which is in a very super critical state, a similar 

pattern between the empirical and simulated ISC was observed during 

stimulation. ISC was not observed in the resting condition at any lev- 

els of consciousness, due to the lack of the driving force provided by the 

external auditory stimulation for synchronization. Distinguishing neural 

signatures of altered consciousness using the simple GIM may aid in the 

diagnosis of patients with disorders of consciousness and can provide an 

indication of how their metabolic activity should be altered in order to 

regain consciousness. 
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