75 research outputs found

    CAN FORWARD DYNAMIC SIMULATION MODELS BE USED TO IMPROVE THE PERFORMANCE OF TOP ATHLETES?

    Get PDF
    The question addressed in this study was whether the forward simulation approach can be used to improve the performance of top athletes. Using a musculoskeletal model we carried out a simulation experiment on vertical squat jumping, which involved (1) generation of target kinematics, (2) production of matching simulations with two different models, (3) finding optimal solutions for the two models and (4) implementation of optimal solutions. It was shown that the approach was only successful if the model used to match the target kinematics accurately represented the system that had generated these target kinematics. Since it is not possible to make accurate models of the musculoskeletal system of individual athletes, the goal of improving the performance of top athletes with a forward dynamic simulation approach seems too ambitious

    Validation of vertical ground reaction forces on individual limbs calculated from kinematics of horse locomotion

    Full text link
    The purpose of this study was to determine whether individual limb forces could be calculated accurately from kinematics of trotting and walking horses. We collected kinematic data and measured vertical ground reaction forces on the individual limbs of seven Warmblood dressage horses, trotting at 3.4 m s(-1) and walking at 1.6 m s(-1) on a treadmill. First, using a segmental model, we calculated from kinematics the total ground reaction force vector and its moment arm relative to each of the hoofs. Second, for phases in which the body was supported by only two limbs, we calculated the individual reaction forces on these limbs. Third, we assumed that the distal limbs operated as linear springs, and determined their force-length relationships using calculated individual limb forces at trot. Finally, we calculated individual limb force-time histories from distal limb lengths. A good correspondence was obtained between calculated and measured individual limb forces. At trot, the average peak vertical reaction force on the forelimb was calculated to be 11.5+/-0.9 N kg(-1) and measured to be 11.7+/-0.9 N kg(-1), and for the hindlimb these values were 9.8+/-0.7 N kg(-1) and 10.0+/-0.6 N kg(-1), respectively. At walk, the average peak vertical reaction force on the forelimb was calculated to be 6.9+/-0.5 N kg(-1) and measured to be 7.1+/-0.3 N kg(-1), and for the hindlimb these values were 4.8+/-0.5 N kg(-1) and 4.7+/-0.3 N kg(-1), respectively. It was concluded that the proposed method of calculating individual limb reaction forces is sufficiently accurate to detect changes in loading reported in the literature for mild to moderate lameness at trot

    Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Get PDF
    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal segments

    The effect of klapskate hinge position on push-off performance: a simulation study

    Get PDF
    klapskate in speed skating confronts skaters with the question of how to adjust the position of the hinge in order to maximize performance. The purpose of this study was to reveal the constraint that klapskate hinge position imposes on push-off performance in speed skating. Method: For this purpose, a model of the musculoskeletal system was designed to simulate a simplified, two-dimensional skating push off. To capture the essence of a skating push off, this model performed a one-leg vertical jump, from a frictionless surface, while keeping its trunk horizontally. In this model, klapskate hinge position was varied by varying the length of the foot segment between 115 and 300 mm. With each foot length, an optimal control solution was found that resulted in the maximal amount of vertical kinetic and potential energy of the body’s center of mass at take off (Weff). Results: Foot length was shown to considerably affect push-off performance. Maximal Weff was obtained with a foot length of 185 mm and decreased by approximately 25 % at either foot length of 115 mm and 300 mm. The reason for this decrease was that foot length affected the onset and control of foot rotation. This resulted in a distortion of the pattern of leg segment rotations and affected muscle work (Wmus) and the efficacy ratio (Weff/Wmus) of the entire leg system. Conclusion: Despite its simplicity, the model very well described and explained the effects of klapskate hinge position on push off performance that have been observed in speed-skating experiments. The simplicity of the model, however, does not allow quantitative analyses of optimal klapskate hinge position for speed-skating practice. Key Words: SPEED SKATING, SPORTS EQUIPMENT, LOCOMOTION, MUSCULO-SKELETAL MODEL, BIOMECHANICS Klapskates have become the custom equipment inspeed skating. In contrast to the conventionalskates, in which the shoe is rigidly fixed to th

    Effects of fatigue of plantarflexors on control and performance in vertical jumping

    Get PDF
    INTRODUCTION: We investigated the effects of a mismatch between control and musculoskeletal properties on performance in vertical jumping. METHODS: Six subjects performed maximum-effort vertical squat jumps before (REF) and after the plantarflexors of the right leg had been fatigued (FAT) while kinematic data, ground reaction forces, and EMG of leg muscles were collected. Inverse dynamics was used to calculate the net work at joints, and EMG was rectified and smoothed to obtain the smoothed rectified EMG (SREMG). The jumps of the subjects were also simulated with a musculoskeletal model comprising seven body segments and 12 Hill-type muscles, and having as only input muscle stimulation. RESULTS: Jump height was approximately 6 cm less in FAT jumps than in REF jumps. In FAT jumps, peak SREMG level was reduced by more than 35% in the right plantarflexors and by approximately 20% in the right hamstrings but not in any other muscles. In FAT jumps, the net joint work was reduced not only at the right ankle (by 70%) but also at the right hip (by 40%). Because the right hip was not spanned by fatigued muscles and the reduction in SREMG of the right hamstrings was relatively small, this indicated that the reduction in performance was partly due to a mismatch between control and musculoskeletal properties. The differences between REF and FAT jumps of the subjects were confirmed and explained by the simulation model. Reoptimization of control for the FAT model caused performance to be partly restored by approximately 2.5 cm. CONCLUSION: The reduction in performance in FAT jumps was partly due to a mismatch between control and musculoskeletal properties. © 2011 The American College of Sports Medicine

    Do we use a priori knowledge of gravity when making elbow rotations?

    Get PDF
    In this study, we aim to investigate whether motor commands, emanating from movement planning, are customized to movement orientation relative to gravity from the first trial on. Participants made fast point-to-point elbow flexions and extensions in the transverse plane. We compared movements that had been practiced in reclined orientation either against or with gravity with the same movement relative to the body axis made in the upright orientation (neutral compared to gravity). For each movement type, five rotations from reclined to upright orientation were made. For each rotation, we analyzed the first trial in upright orientation and the directly preceding trial in reclined orientation. Additionally, we analyzed the last five trials of a 30-trial block in upright position and compared these trials with the first trials in upright orientation. Although participants moved fast, gravitational torques were substantial. The change in body orientation affected movement planning: we found a decrease in peak angular velocity and a decrease in amplitude for the first trials made in the upright orientation, regardless of whether the previous movements in reclined orientation were made against or with gravity. We found that these decreases disappeared after participants familiarized themselves with moving in upright position in a 30-trial block. These results indicate that participants used a general strategy, corresponding to the strategy observed in situations with unreliable or limited information on external conditions. From this, we conclude that during movement planning, a priori knowledge of gravity was not used to specifically customize motor commands for the neutral gravity condition

    A model of open-loop control of equilibrium position and stiffness of the human elbow joint

    Get PDF
    According to the equilibrium point theory, the control of posture and movement involves the setting of equilibrium joint positions (EP) and the independent modulation of stiffness. One model of EP control, the α-model, posits that stable EPs and stiffness are set open-loop, i.e. without the aid of feedback. The purpose of the present study was to explore for the elbow joint the range over which stable EPs can be set open-loop and to investigate the effect of co-contraction on intrinsic low-frequency elbow joint stiffness (

    Conclusions on motor control depend on the type of model used to represent the periphery

    Get PDF
    Within the field of motor control, there is no consensus on which kinematic and kinetic aspects of movements are planned or controlled. Perturbing goal-directed movements is a frequently used tool to answer this question. To be able to draw conclusions about motor control from kinematic responses to perturbations, a model of the periphery (i.e., the skeleton, muscle-tendon complexes, and spinal reflex circuitry) is required. The purpose of the present study was to determine to what extent such conclusions depend on the level of simplification with which the dynamical properties of the periphery are modeled. For this purpose, we simulated fast goal-directed single-joint movement with four existing types of models. We tested how three types of perturbations affected movement trajectory if motor commands remained unchanged. We found that the four types of models of the periphery showed different robustness to the perturbations, leading to different predictions on how accurate motor commands need to be, i.e., how accurate the knowledge of external conditions needs to be. This means that when interpreting kinematic responses obtained in perturbation experiments the level of error correction attributed to adaptation of motor commands depends on the type of model used to describe the periphery

    Drop Jumping as a Training Method for Jumping Ability

    No full text
    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to satisfy these requirements. This assumption is supported by a review of results of training studies. However, it appears that regular jumping exercises can be just as helpful. The same holds for exercises with weights, provided the subjects have no weight-training history. In fact, for unskilled jumpers who have no weight-training history, the effects of training programmes utilising these different exercises are additive. The most effective, efficient and safe way for a coach to improve the jumping achievement of his athletes may well be to submit them first to a training programme utilising regular jumps, then to a weight-training programme and finally to a drop jump training programme. In drop jump training programmes themselves, the improvement in jumping height varies greatly among studies. This variation cannot be explained satisfactorily with the information available on subjects and training programmes. Given the current state of knowledge, coaches seem to have no other option than to strictly copy a programme which has proved to be very effective. Obviously there is a need for more systematic research of the relationship between design and effect of drop jump training programmes. The most important variable to be controlled is drop jumping technique. From a review of biomechanical studies of drop jumping, it becomes clear that jumping technique strongly affects the mechanical output of muscles. The biomechanics of 2 techniques are discussed. In the bounce drop jump the downward movement after the drop is reversed as soon as possible into an upward push-off, while in the countermovement drop jump this is done more gradually by increasing the amplitude of the downward movement after landing. It is speculated that the bounce drop jump might trigger improvement of the power output capacity of muscles, whereas the repetition of the countermovement drop jump may help to improve coordination. Future training studies are needed to determine whether drop jumping technique really affects the outcome of the training, and if so, which technique should be preferred. Also, further biomechanical research is needed to determine kinematics and kinetics of other drop jumping techniques, and to trace potential dangers. The author urges for a close cooperation between coaches and scientists in future research

    Towards a neuronal network controller for vertical jumping from different initial squat depths

    No full text
    In this study, a forward dynamic simulation model of the human musculoskeletal system was used to explore various strategies of generating muscle stimulation patterns for vertical squat jumping. It was shown that a simple mapping from joint angles to muscle stimulation onsets yielded successful control, albeit not optimal control, for jumps from different initial squat depths. Furthermore, it was shown that this mapping could be implemented in a straightforward way in a simple network of Hodgkin-Huxley type neurons
    • 

    corecore