61 research outputs found

    Reduced Bayesian Hierarchical Models: Estimating Health Effects of Simultaneous Exposure to Multiple Pollutants

    Get PDF
    Quantifying the health effects associated with simultaneous exposure to many air pollutants is now a research priority of the US EPA. Bayesian hierarchical models (BHM) have been extensively used in multisite time series studies of air pollution and health to estimate health effects of a single pollutant adjusted for potential confounding of other pollutants and other time-varying factors. However, when the scientific goal is to estimate the impacts of many pollutants jointly, a straightforward application of BHM is challenged by the need to specify a random-effect distribution on a high-dimensional vector of nuisance parameters, which often do not have an easy interpretation. In this paper we introduce a new BHM formulation, which we call reduced BHM , aimed at analyzing clustered data sets in the presence of a large number of random effects that are not of primary scientific interest. At the first stage of the reduced BHM, we calculate the integrated likelihood of the parameter of interest (e.g. excess number of deaths attributed to simultaneous exposure to high levels of many pollutants). At the second stage, we specify a flexible random-effect distribution directly on the parameter of interest. The reduced BHM overcomes many of the challenges in the specification and implementation of full BHM in the context of a large number of nuisance parameters. In simulation studies we show that the reduced BHM performs comparably to the full BHM in many scenarios, and even performs better in some cases. Methods are applied to estimate location-specific and overall relative risks of cardiovascular hospital admissions associated with simultaneous exposure to elevated levels of particulate matter and ozone in 51 US counties during the period 1999-2005

    Perinatal Air Pollutant Exposures and Autism Spectrum Disorder in the Children of Nurses’ Health Study II Participants

    Get PDF
    Objective: Air pollution contains many toxicants known to affect neurological function and to have effects on the fetus in utero. Recent studies have reported associations between perinatal exposure to air pollutants and autism spectrum disorder (ASD) in children. We tested the hypothesis that perinatal exposure to air pollutants is associated with ASD, focusing on pollutants associated with ASD in prior studies. Methods: We estimated associations between U.S. Environmental Protection Agency–modeled levels of hazardous air pollutants at the time and place of birth and ASD in the children of participants in the Nurses’ Health Study II (325 cases, 22,101 controls). Our analyses focused on pollutants associated with ASD in prior research. We accounted for possible confounding and ascertainment bias by adjusting for family-level socioeconomic status (maternal grandparents’ education) and census tract–level socioeconomic measures (e.g., tract median income and percent college educated), as well as maternal age at birth and year of birth. We also examined possible differences in the relationship between ASD and pollutant exposures by child’s sex. Results: Perinatal exposures to the highest versus lowest quintile of diesel, lead, manganese, mercury, methylene chloride, and an overall measure of metals were significantly associated with ASD, with odds ratios ranging from 1.5 (for overall metals measure) to 2.0 (for diesel and mercury). In addition, linear trends were positive and statistically significant for these exposures (p < .05 for each). For most pollutants, associations were stronger for boys (279 cases) than for girls (46 cases) and significantly different according to sex. Conclusions: Perinatal exposure to air pollutants may increase risk for ASD. Additionally, future studies should consider sex-specific biological pathways connecting perinatal exposure to pollutants with ASD

    Toward a Quantitative Estimate of Future Heat Wave Mortality under Global Climate Change

    Get PDF
    Background: Climate change is anticipated to affect human health by changing the distribution of known risk factors. Heat waves have had debilitating effects on human mortality, and global climate models predict an increase in the frequency and severity of heat waves. The extent to which climate change will harm human health through changes in the distribution of heat waves and the sources of uncertainty in estimating these effects have not been studied extensively. Objectives: We estimated the future excess mortality attributable to heat waves under global climate change for a major U.S. city. Methods: We used a database comprising daily data from 1987 through 2005 on mortality from all nonaccidental causes, ambient levels of particulate matter and ozone, temperature, and dew point temperature for the city of Chicago, Illinois. We estimated the associations between heat waves and mortality in Chicago using Poisson regression models. Results: Under three different climate change scenarios for 2081–2100 and in the absence of adaptation, the city of Chicago could experience between 166 and 2,217 excess deaths per year attributable to heat waves, based on estimates from seven global climate models. We noted considerable variability in the projections of annual heat wave mortality; the largest source of variation was the choice of climate model. Conclusions: The impact of future heat waves on human health will likely be profound, and significant gains can be expected by lowering future carbon dioxide emissions

    Baseline representativeness of patients in clinics enrolled in the PRimary care Opioid Use Disorders treatment (PROUD) trial: comparison of trial and non-trial clinics in the same health systems

    Get PDF
    BACKGROUND: Pragmatic primary care trials aim to test interventions in real world health care settings, but clinics willing and able to participate in trials may not be representative of typical clinics. This analysis compared patients in participating and non-participating clinics from the same health systems at baseline in the PRimary care Opioid Use Disorders treatment (PROUD) trial. METHODS: This observational analysis relied on secondary electronic health record and administrative claims data in 5 of 6 health systems in the PROUD trial. The sample included patients 16-90 years at an eligible primary care visit in the 3 years before randomization. Each system contributed 2 randomized PROUD trial clinics and 4 similarly sized non-trial clinics. We summarized patient characteristics in trial and non-trial clinics in the 2 years before randomization ( baseline ). Using mixed-effect regression models, we compared trial and non-trial clinics on a baseline measure of the primary trial outcome (clinic-level patient-years of opioid use disorder (OUD) treatment, scaled per 10,000 primary care patients seen) and a baseline measure of the secondary trial outcome (patient-level days of acute care utilization among patients with OUD). RESULTS: Patients were generally similar between the 10 trial clinics (n = 248,436) and 20 non-trial clinics (n = 341,130), although trial clinics\u27 patients were slightly younger, more likely to be Hispanic/Latinx, less likely to be white, more likely to have Medicaid/subsidized insurance, and lived in less wealthy neighborhoods. Baseline outcomes did not differ between trial and non-trial clinics: trial clinics had 1.0 more patient-year of OUD treatment per 10,000 patients (95% CI: - 2.9, 5.0) and a 4% higher rate of days of acute care utilization than non-trial clinics (rate ratio: 1.04; 95% CI: 0.76, 1.42). CONCLUSIONS: trial clinics and non-trial clinics were similar regarding most measured patient characteristics, and no differences were observed in baseline measures of trial primary and secondary outcomes. These findings suggest trial clinics were representative of comparably sized clinics within the same health systems. Although results do not reflect generalizability more broadly, this study illustrates an approach to assess representativeness of clinics in future pragmatic primary care trials

    Identification of features of electronic prescribing systems to support quality and safety in primary care using a modified Delphi process

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electronic prescribing is increasingly being used in primary care and in hospitals. Studies on the effects of e-prescribing systems have found evidence for both benefit and harm. The aim of this study was to identify features of e-prescribing software systems that support patient safety and quality of care and that are useful to the clinician and the patient, with a focus on improving the quality use of medicines.</p> <p>Methods</p> <p>Software features were identified by a literature review, key informants and an expert group. A modified Delphi process was used with a 12-member multidisciplinary expert group to reach consensus on the expected impact of the features in four domains: patient safety, quality of care, usefulness to the clinician and usefulness to the patient. The setting was electronic prescribing in general practice in Australia.</p> <p>Results</p> <p>A list of 114 software features was developed. Most of the features relate to the recording and use of patient data, the medication selection process, prescribing decision support, monitoring drug therapy and clinical reports. The expert group rated 78 of the features (68%) as likely to have a high positive impact in at least one domain, 36 features (32%) as medium impact, and none as low or negative impact. Twenty seven features were rated as high positive impact across 3 or 4 domains including patient safety and quality of care. Ten features were considered "aspirational" because of a lack of agreed standards and/or suitable knowledge bases.</p> <p>Conclusions</p> <p>This study defines features of e-prescribing software systems that are expected to support safety and quality, especially in relation to prescribing and use of medicines in general practice. The features could be used to develop software standards, and could be adapted if necessary for use in other settings and countries.</p

    PRimary Care Opioid Use Disorders treatment (PROUD) trial protocol: a pragmatic, cluster-randomized implementation trial in primary care for opioid use disorder treatment

    Get PDF
    BACKGROUND: Most people with opioid use disorder (OUD) never receive treatment. Medication treatment of OUD in primary care is recommended as an approach to increase access to care. The PRimary Care Opioid Use Disorders treatment (PROUD) trial tests whether implementation of a collaborative care model (Massachusetts Model) using a nurse care manager (NCM) to support medication treatment of OUD in primary care increases OUD treatment and improves outcomes. Specifically, it tests whether implementation of collaborative care, compared to usual primary care, increases the number of days of medication for OUD (implementation objective) and reduces acute health care utilization (effectiveness objective). The protocol for the PROUD trial is presented here. METHODS: PROUD is a hybrid type III cluster-randomized implementation trial in six health care systems. The intervention consists of three implementation strategies: salary for a full-time NCM, training and technical assistance for the NCM, and requiring that three primary care providers have DEA waivers to prescribe buprenorphine. Within each health system, two primary care clinics are randomized: one to the intervention and one to Usual Primary Care. The sample includes all patients age 16-90 who visited the randomized primary care clinics from 3 years before to 2 years after randomization (anticipated to be \u3e 170,000). Quantitative data are derived from existing health system administrative data, electronic medical records, and/or health insurance claims ( electronic health records, [EHRs]). Anonymous staff surveys, stakeholder debriefs, and observations from site visits, trainings and technical assistance provide qualitative data to assess barriers and facilitators to implementation. The outcome for the implementation objective (primary outcome) is a clinic-level measure of the number of patient days of medication treatment of OUD over the 2 years post-randomization. The patient-level outcome for the effectiveness objective (secondary outcome) is days of acute care utilization [e.g. urgent care, emergency department (ED) and/or hospitalizations] over 2 years post-randomization among patients with documented OUD prior to randomization. DISCUSSION: The PROUD trial provides information for clinical leaders and policy makers regarding potential benefits for patients and health systems of a collaborative care model for management of OUD in primary care, tested in real-world diverse primary care settings
    • …
    corecore