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and Francesca Dominici3*

Abstract

Background: Heat stroke is a serious heat-related illness, especially among older adults. However, little is known
regarding the spatiotemporal variation of heat stroke admissions during heat waves and what factors modify the
adverse effects.

Methods: We conducted a large-scale national study among 23.5 million Medicare fee-for-service beneficiaries per
year residing in 1,916 US counties during 1999–2010. Heat wave days, defined as a period of at least two
consecutive days with temperatures exceeding the 97th percentile of that county’s temperatures, were matched to
non-heat wave days by county and week. We fitted random-effects Poisson regression models to estimate the
relative risk (RR) of heat stroke admissions on a heat wave day as compared to a matched non-heat wave day. A
variety of effect modifiers were tested including individual-level covariates, community-level covariates,
meteorological conditions, and the intensity and duration of the heat wave event.

Results: The RR declined substantially from 71.0 (21.3–236.2) in 1999 to 3.5 (1.9–6.5) in 2010, and was highest in the
northeast and lowest in the west north central regions of the US. We found a lower RR among counties with
higher central air conditioning (AC) prevalence. More severe and longer-lasting heat waves had higher RRs.

Conclusions: Heat stroke hospitalizations associated with heat waves declined dramatically over time, indicating
increased resilience to extreme heat among older adults. Considerable risks, however, still remain through 2010,
which could be addressed through public health interventions at a regional scale to further increase central AC and
monitoring heat waves.

Keywords: Heat wave, Heat stroke, Medicare beneficiaries, Spatiotemporal variation, Effect modification

Background
A heat wave, characterized by a sustained period of ex-
treme hot weather, is associated with increased mortality
and morbidity, particularly among older adults [1–5].
During 2000–2009, heat waves contributed to over five
billion dollars of health cost in the US [6]. Under the
changing climate, the intensity, frequency, and duration
of heat waves have increased especially in the past
15 years [7, 8] and are very likely to continue to increase

in this century [9, 10]. A recent national survey, how-
ever, found that response plans for extreme hot
temperature were far from adequate in the US [11]. A
more in-depth understanding of the spatiotemporal
pattern of heat-related diseases and the factors that can
attenuate the adverse health impact of heat waves is
essential for the development of regional public health
policies to protect susceptible population from the adverse
effect of heat waves.
Heat stroke is one of the most serious and life-

threatening illnesses directly related to heat exposure
[12]. Heat stroke patients typically have an increased
core body temperature of over 40 °C and dysfunction of
the central nervous system, which is often fatal if the
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treatment is not adequate [13]. Older adults are particu-
larly susceptible due to decreased thermoregulatory
function, chronic health condition, or medication use
that interferes with the functioning of thermoregulation
[14]. Although several studies have investigated the asso-
ciation between heat exposure and heat strokes [2, 3,
15–17], most of these were restricted to a small geo-
graphical region. One national study, Bobb et al. (2014),
estimated the relative risk (RR) of a composite outcome
of heat-related diseases on heat wave days compared to
non-heat wave days but only reported a national overall
estimate for the study period 1999–2010 [2]. Such an
overall estimate, however, masks potentially substantial
spatial and temporal variability in the risk. To our know-
ledge, no national study has examined whether heat
stroke admissions during heat waves vary across geo-
graphical region or over time. Importantly, little is
known about what factors explain spatial and temporal
heterogeneity in heat stroke risk.
We estimated the RR of heat stroke hospital admissions

associated with heat waves using a large nationwide data-
base of unprecedented size and accuracy. We hypothe-
sized that the RR might be changing over time, that it
would vary across geographical regions, and that several
individual- and county-level variables, meteorological con-
ditions, as well as the characteristics of the heat wave (i.e.,
intensity and duration) would explain the spatial and tem-
poral variability in the heat wave-related risks.

Methods
Study population
Our study population comprised Medicare beneficiaries
who were aged 65 years or older and enrolled in the fee-
for-service program for at least one month from January
1st, 1999 to December 31st, 2010 in the contiguous US
[2]. In total, 23.5 million participants per year residing in
1,916 counties were included. For each of the eligible
Medicare beneficiaries, data on age, county of residence,
dates of hospital admission, and the International Classi-
fication of Diseases, Ninth Revision (ICD-9) code for the
primary cause of each hospitalization were extracted.
The outcome was hospital admissions with a principal

discharge code of the ICD-9, 992.0 denoting heat stroke
and sunstroke (we will refer to both of these as heat
stroke). For each county, we calculate the daily number
of hospital admissions for heat stroke in (numerators)
and the daily number of Medicare beneficiaries
(denominators).

Meteorological data and heat wave definition
Monitoring data for daily mean temperatures were ob-
tained from National Climatic Data Center (NCDC, now
National Centers for Environmental Information (NCEI);
Global Summary of the Day). Daily temperature in a

county was averaged from daily temperatures of all mon-
itoring sites within that county. For counties (on days)
without monitoring sites or temperature data available,
daily temperature was obtained by averaging over moni-
toring sites within 35 km of the county’s centroid [18].
Counties were excluded from the analysis if they (1) did
not have at least one temperature monitoring site within
the county and (2) did not have a monitor within 35 km
from the county’s centroid. The same method was ap-
plied to obtain the average daily dew point temperature,
relative humidity (RH), and wind speed for each of the
counties.
The primary definition of a heat wave event was a

period of at least two consecutive days with daily mean
temperature greater than the 97th percentile of tempera-
tures in that county. We did not restrict the dataset only
to the summer season. We compared the estimates ob-
tained based on this definition to those obtained using
stricter definitions, which included >98th, 99th for two
consecutive days and >97th, 98th, 99th for four consecu-
tive days [2]. We chose >97th for two consecutive days
as the main exposure is because such a definition is able
to capture more heat stroke hospital admissions than
other stricter definitions, and therefore increase the pre-
cision of the heat wave risk estimates.

Covariates
Monthly Moderate Resolution Imaging Spectroradiometer
(MODIS) Level 3 Normalized Difference Vegetation Index
(NDVI) data on a 1 km by 1 km grid were obtained from
National Aeronautics and Space Administration (NASA)
from February 2000 to December 2010. The NDVI prod-
uct is a measure of the green leaf vegetation (greenness)
of the grid cell, with values from lowest to highest vegeta-
tion ranging from −0.2 to 1.
Daily levels of ozone were obtained from Environmen-

tal Protection Agency (EPA) and the Interagency Moni-
toring of Protected Visual Environment (IMPROVE)
monitoring sites during 1999–2010.
Daily cloud cover data (low, medium, and high cloud

cover) were obtained from National Center for Environ-
mental Protection (NCEP) – National Center for Atmos-
pheric Research (NCAR) North American Regional
Reanalysis data set, which have a spatial resolution of
approximately 0.3°.
AC prevalence in metropolitan areas was obtained

from American Housing Survey (AHS) data from 1998
to 2011 (http://www.census.gov/programs-surveys/ahs/
data.html). We considered both prevalence of central
AC and of “any AC”, defined as having either central AC
or one or more room units.
More details about these covariates are described in

Additional file 1: Text 1.
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Statistical analysis
Each heat wave day was matched to a non-heat wave
(control) day by county and by week (Fig. 1). Specifically,
for each heat wave day, a candidate non-heat wave day
was a day that was: 1) in other years as the index heat
wave day; 2) in the same week and county as the index
heat wave day; and 3) not within three days of a different
heat wave day. If there are multiple candidate control days,
we select one of them at random to achieve 1:1 matching
[2]. Matching is a well-established approach to achieve bal-
ance in the covariates distribution between heat wave days
and non-heat wave days. By design, the matching elimi-
nated potential confounding by seasonality and county-
level time-invariant covariates since the matching results in
a similar distribution of weeks during the study period and
county-level covariates in the matched non-heat wave days
as the distribution of those factors among the heat wave
days. Matching also substantially reduced the size of the
data, thereby increasing computational efficiency.
Using the matched dataset, we fitted a random-effects

Poisson regression model with county-level random inter-
cepts, controlling for calendar year and day of the week.
More formally, in county c on day t, we assumed that the
number of hospital admissions for heat stroke (Yct) follows

log E Yctð Þ ¼ γ0;c þ β0 þ β1HWct þ β2Dowt

þ β3Yeart þ log Pctð Þ ð1Þ

where γ0,c is the random intercept for county c, HWct

indicates if day t in county c is a heat wave day, Dowt is
an indicator variable for day of the week, Yeart is a cat-
egorical variable for year, and Pct is the number of Medi-
care enrollees in county c on day t. We are interested in
the adjusted relative risk (RR) of heat stroke admissions
on heat wave days compared to matched non-heat wave
days, exp (β1).
We estimated a long-term time trend of the RR during

1999–2010 in two different ways. First, we included
interaction terms between the heat wave and the indica-
tor variables for each year. Second, we smoothed the
trend using interaction terms between the heat wave day
indicator and natural cubic spline of year with five
degrees of freedom.
To test whether the RR differed by month of the sum-

mer season, we included interaction terms of the heat
wave day indicator with indicator variables for month
(June, July, and August).
We assigned each of the 1,916 US counties to one of

the nine climate regions [19]: central, east north central,
west north central, northeast, northwest, south, south-
east, southwest, and west. We estimated the RR for each
climate region by a product term between heat wave and
a categorical variable for climate regions.
A variety of effect modifiers were tested. We used age

as an indicator of individual-level vulnerability and
tested if it modifies the association between heat waves
and heat stroke. A number of county-level variables
were also tested, including AC prevalence (central or
any), mean summer NDVI, mean summer ozone con-
centration, mean summer temperature, mean summer
RH, mean summer wind speed, mean summer low/
medium/high cloud cover, and urbanicity. In addition,
we also tested if (1) the intensity and the duration of
heat waves, (2) the meteorological conditions on heat
wave days (temperature, dew point, RH, cloud cover),
and (3) the temperature percentile on the day before
a heat wave day altered the association. More details
about the modeling approach are described in Additional
file 1: Text 2.
Several sensitivity analyses were conducted. First, we

additionally adjusted for a natural spline of day of the
year with six degree of freedom in the main model.
Second, we eliminated the observation if the mean
temperature of that day was computed using less than
18 h of measurement data. Third, we eliminated the
counties whose temperatures were assigned using the
35 km rule (38 %). Fourth, we estimated the regional
RRs using two other definitions temperatures >98th
and >99th percentile for at least two consecutive days
and >97th for at least four consecutive days. Fifth, we
fitted quasi-Poisson models to estimate both the over-
all and the regional RRs.

Fig. 1 An example illustrating how control days were matched to
heat wave days. July 30, 1999 was a heat wave day in Chicago. Five
candidate control days occurred in the same county and same week
of the year as this heat wave day. One of them was randomly
selected and matched with the heat wave day
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Results
There were 119,817 heat wave days in 1,916 counties
during 1999–2010. Table 1 presents the number of heat
stroke admissions on heat wave days and matched non-
heat wave days by age group. The overall RR of heat
stroke on heat wave days (>97th, two days) compared to
matched non-heat wave days was 11.0 (95 % confidence
interval: 8.8–13.6).
The RR of heat stroke on heat wave days compared to

matched non-heat wave days decreased from 71.0 (21.3–
236.2) in 1999 to 3.5 (1.9–6.5) in 2010 (Fig. 2). This de-
crease was the largest in 1999–2003, leveled off in
2003–2008, and then continued to decrease after 2008.
Within the summer season, we found that the RR was
similar in June and July but was lower in August [p for
interaction (August vs. June) = 0.03; p for interaction
(July vs. June) = 0.78] (Additional file 1: Figure S1).
The RR was highest in the northeast [25.5 (14.9–43.6)],

followed by the west [13.4 (7.5–24.2)], and lowest in the
west north central [2.9 (0.9–8.9)] (Fig. 3). Moreover, the
temporal trend of RR during 1999–2010 differed sub-
stantially in each of the climate regions (Additional file
1: Figure S2).
The RR was similar across the three age groups [p for

interaction (75–85 vs. 65–75) = 0.82; p for interaction
(>75 vs. 65–75) = 0.76] (Additional file 1: Figure S3).
Counties with higher prevalences of central or any AC

had lower heat wave-related RRs. In particular, the RR
decreased by 28 % (9 %–43 %) per 10 % increase in cen-
tral AC prevalence (Fig. 4). NDVI, urbanicity, mean
summer temperature, RH, wind speed, cloud cover, or
ozone concentration did not modify the association be-
tween heat stroke admissions and heat wave days.
The RRs increased with the intensity and duration of

heat waves (Fig. 5). Additional file 1: Figure S4 shows
that the confidence intervals for the effect modifications
of RR by daily meteorological variables all included one.
Low temperature (<80th percentile) on the day before
heat wave was associated with a higher RR, compared
to moderate (p for interaction = 0.05) or high (p for
interaction = 0.13) temperature on the day before a
heat wave day.
When we further adjusted for a natural cubic spline

for day of the year (1-365/366) with six degrees of free-
dom to account for potential residual confounding by

seasonality after matching, the RR did not change [RR
11.0 (8.8–13.6)]. When we eliminated observations with
daily mean temperature computed using less than 18 h
of the data, we obtained a similar RR of 10.4 (8.3–13.0).
When we eliminated counties whose temperature relied
on monitoring sites within 35 km but outside of that
county, we obtained a similar estimate of 10.3 (8.2–13.0).
Additional file 1: Figure S5 presented the regional RR for
two stricter definitions >98th and 99th percentile for at
least two consecutive days. The relative ranking of RR
across regions did not change, whereas the RR increased
as the definitions became stricter. We obtained a RR of
11.0 (8.9–13.4) when using a quasi-Poisson model, sug-
gesting the appropriateness of using a Poisson model. The
regional RRs using a quasi-Poisson model are also pre-
sented in Additional file 1: Figure S6. The confidence
intervals are close to the ones presented in Fig. 3a.

Discussion
We conducted a large-scale national study investigating
heat stroke admissions associated with heat waves, in-
cluding a study population of 23.5 million older adults
per year for 12 years and a spatial coverage of 1,916 US
counties. We also tested a variety of effect modifications.
By understanding which factors explain which locations
or subpopulations are most susceptible to the harmful
effects of heat can enable targeting public health inter-
ventions to those who are most susceptible. This is espe-
cially important with the increasing risks of extreme
heat events under climate change.
Our study provides evidence on how susceptibility to

heat changes both over the course of the warm season,
as well as over longer time scales. First, our finding that
heat stroke risks declined over time suggests that older
adults have become more resilient to the effect of ex-
treme heat on heat stroke over time. This is consistent
with previous studies that found declines in heat-related
mortality [18, 20, 21]. Although 2002 and 2010 had
more heat wave days, the RR continued to decrease sug-
gesting the changing risks were unlikely due to simply
lower exposures. The RR was higher in June than in
August. This is consistent with some previous studies on
mortality suggesting that the health effect of high
temperature decreased as summer progressed [22–24].
Future studies could examine whether variables such as
the change in dual eligibility over time, change in age
structure over time, access to healthcare could explain
the temporal trend.
We found that heat stroke risks differed substantially

across climate regions and explored whether several
county-level covariates might explain this spatial vari-
ability. Previous studies provided mixed evidence on
whether heat-related morbidity or mortality was modi-
fied by AC prevalence [16, 18, 21, 25]. We found strong

Table 1 Number of heat stroke hospital admissions on heat
wave days (primary definition) and matched non-heat wave
days by age group

Age group Heat wave days Matched non-heat wave days

65–74 331 27

75–84 450 39

>84 349 26
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evidence that counties with higher AC prevalence had
greatly reduced risk of heat stroke admissions during
heat waves. Although prior work has suggested that
vegetation can alter the microclimate and exert a cooling
effect by shading the area [26], we did not find a reduc-
tion in heat stroke risks in counties with higher NDVI.
We found that counties with a warmer summer climate
tended to have fewer heat stroke admission associated
with heat waves, albeit with wider confidence interval.
Counties with warmer climates (e.g. the south) likely
have a range of adaptations (e.g., higher AC prevalence
in homes or public spaces), and hence may be better
prepared for the heat waves. Although urban areas typic-
ally have higher temperatures than suburban or rural areas
due to the urban heat island effect [27], and although pre-
vious work found higher urbanicity to be associated with
higher heat-related mortality risk [28], we did not find a
clear difference in heat stroke risks by urbanicity (i.e. in
metropolitan areas versus non-metropolitan areas). A pre-
vious study suggested that ozone pollution positively
modifies the relative risk of heat waves on cardiovascular
mortality [29]. However, we did not observe interaction
between county-average ozone pollution and heat wave.
We found that increased risk of heat stroke admissions

during heat waves was larger for more intense or longer-

lasting heat waves, consistent with a previous study of
heat-related hospitalizations [2] and prior literature on
heat-related mortality [28, 30, 31]. In our study, days
with higher temperature, dew point temperature, RH,
and medium and high cloud cover also tended to have
higher risks of heat stroke hospitalizations during heat
waves, although the confidence intervals of the effect
modification estimates all included zero.
Some evidence has suggested the thermoregulatory

system becomes more susceptible to environmental heat
exposure as the body ages [13] and that chronic condi-
tions or medication use among older adults may also in-
crease vulnerability [14], but we did not find a difference
in the risk of heat stroke admissions during heat waves
across the three age groups. One possible explanation
could be that those individuals who are older or most
susceptible to heat-related illness may be more likely to
avoid activities (e.g. walking outside) that would increase
their risk during very hot days.
Our estimate of the overall RR over the study period

was 11.0 (8.8–13.6) on heat wave days compared to
matched non-heat wave days. Bobb et al. (2014) reported
a smaller RR of 2.54 (2.14–3.01) for the effect of heat
wave (>99th, at least two days) on a disease category that
included heat stroke, heat exhaustion, and other heat-

Fig. 2 Temporal trend of (a) the relative risk (RR) of heat stroke on heat wave days compared to matched control days and (b) the average
number of heat wave days per county per year over 1999–2010 (the error bars represent one standard deviation). The smoothed trends for the
RR were estimated by natural splines with five degrees of freedom. The models controlled for indicator variables for day of the week. The RR
(e.g. RR = x) should be interpreted as the risk of heat stroke admissions on heat wave days was x times the risk on matched non-heat wave days
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Fig. 3 Spatial variation of (a) the relative risk (RR) of heat stroke on heat wave days compared to matched control days, and (b) the average
number of heat wave days per county per year across the climate regions (the error bars represent one standard deviation). The model
controlled for indicator variables of year and day of the week

Fig. 4 Relative change in the relative risk (RR) of heat stroke on heat wave days compared to matched non-heat wave days associated with
changes in county-level covariates: AC prevalence (any and central AC, per 10 % increase), mean summer NDVI (per 0.1 increase), mean ozone
concentration (per 10 ppb increase), summer climate [temperature (T): per 10 °F; RH: per 10 %; wind speed (WS): per 0.5 km h−1 increase; low
cloud cover (LCC), medium cloud cover (MCC), high cloud cover (HCC): per 5 %], and urbanicity [metropolitan (Metro); non-metropolitan with
population >20,000 (Non-M 1); non-metropolitan with population < 20,000 (Non-M 2)]. Estimates and error bars in green indicate modifiers that
decrease the RR and whose confidence intervals exclude one. The models include both random slopes and random intercepts. The y-axis represents
the ratio of the RR per the specified increase in each modifier, obtained as the exponent of the coefficient for the interaction term between the heat
wave day indicator variable and the covariate

Wang et al. Environmental Health  (2016) 15:83 Page 6 of 9



related illnesses for the same study period [2]. The
reason why the previous study yielded a much smaller
estimate is because they used the broader disease
grouping, which included not only heat stroke and
sunstroke but also various other diagnoses that are
not specifically related to heat, while we focused
solely on heat stroke.
There are several limitations in our study. First, some

of the counties in the west US are much larger than the
ones in the eastern US. Assigning an average
temperature to large counties using the temperature
data from only a few monitoring sites is not optimal. In
addition, using only a few monitoring sites to assess
temperature in a county is likely to produce Berkson er-
rors, which, although it does not create bias, could
widen the confidence intervals [32]. Many counties re-
lied on only a few monitoring sites, which also makes it
difficult to weight temperature by population. Future
satellite-based temperature prediction models, which
could predict temperature up to 1 km spatial resolution,
could address this issue [33]. Second, NDVI is also
not a perfect measure of vegetation coverage or the
cooling effects by the vegetation. Third, AC preva-
lence, an ecological measure, was used instead of ac-
tual AC use. Third, although the matching algorithm
considerably reduced the computation time and re-
moved the confounding by seasonality and county-
level time-invariant covariates, the control days were
randomly picked from a number of potential candi-
dates and such a randomness could be passed into
the results of the modeling.

Conclusion
In conclusion, the risk of heat stroke has decreased sub-
stantially over time. However, considerable risk still
remained through 2010. The substantial difference in
the effect of heat-related disease risk across regions im-
plies that public health policies for extreme heat events
need to be regional. Among a number of covariates, AC
has the potential to decrease the RR. An increase in AC
prevalence in areas such as the northeast could be one
of the possible strategies to further reduce the risk. Add-
itionally, the RR was higher for longer and more intense
heat waves. Such an excess risk is likely to be reduced by
implementing an early warning system for heat waves in
areas that lack one. This would be particularly helpful as
heat waves are expected to be longer and more intense
in the future.

Additional file

Additional file 1: Supplementary Materials. Text 1. Detailed methods
on covariates: temperature, RH, wind speed, dew point temperature
NDVI, ozone concentration, cloud cover, air conditioning data. Text 2.
Detailed methods on testing effect modifications. Figure S1. The RR of
heat stroke on heat wave days compared to matched non-heat wave
days in June, July, and August. The models controlled for indicator vari-
ables of year and day of the week. Figure S2. Temporal trends of log RR
of heat stroke on heat wave days compared to matched non-heat wave
days in (a) central, (b) east north central, (c) northeast, (d) northwest, (e)
south, (f) southeast, (g) southwest, and (h) west. The time trends were
estimated by natural splines with three degrees of freedom, controlling
for indicator variables of day of the week. The model for the west north
central did not converge because the number of cases was too few. The
model for the southwest is not as stable as other regions due to the
sparsity of the outcome. Figure S3. The RR of heat stroke on heat wave

Fig. 5 The relative risk (RR) of heat stroke on heat wave days as compared with matched control days by definition of a heat wave event. The
definitions of heat wave are temperature >97th, 98th, or 99th percentile for at least two or four consecutive days
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days compared to matched non-heat wave days in for Medicare benefi-
ciaries in 65–74, 75–84, and >84 years in age. The models controlled for
indicator variables of year and day of the week. Figure S4. Relative
change in RR [exp (unit change*coefficient for the modifier)] of heat
stroke on heat wave days compared to matched non-heat wave days per
10° Fahrenheit increase in daily temperature (T), per 10° Fahrenheit in-
crease in daily dew point temperature (DEWP), per 10 % increase in rela-
tive humidity (RH), per 10 % increase in low cloud cover (LCC), per 10 %
increase in medium cloud cover (MCC), per 10% increase in high cloud
cover (HCC), and the temperature percentile before heat wave event
(comparing 80–90th and >90th with <80th). The models controlled for the
indicator variables of year and day of the week. Figure S5. Same as Fig. 3
panel (a) except that three other heat wave definitions were used (a) >98th

percentile temperature for at least two days, (b) >99th percentile
temperature for at least two days, (c) >97th percentile for at least two days.
Figure S6. Same as Fig. 3 panel (a) except that a quasi-Poisson model was
fitted to allow overdispersion. (DOCX 637 kb)
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