35 research outputs found

    Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates

    Get PDF
    Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits

    Functional gene delivery to and across brain vasculature of systemic AAVs with endothelial-specific tropism in rodents and broad tropism in primates

    Full text link
    Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits

    Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling

    Get PDF
    The rapid pace of cell type identification by new single-cell analysis methods has not been met with efficient experimental access to the newly discovered types. To enable flexible and efficient access to specific neural populations in the mouse cortex, we collected chromatin accessibility data from individual cells and clustered the single-cell data to identify enhancers specific for cell classes and subclasses. When cloned into adeno-associated viruses (AAVs) and delivered to the brain by retro-orbital injections, these enhancers drive transgene expression in specific cell subclasses in the cortex. We characterize several enhancer viruses in detail to show that they result in labeling of different projection neuron subclasses in mouse cortex, and that one of them can be used to label the homologous projection neuron subclass in human cortical slices. To enable the combinatorial labeling of more than one cell type by enhancer viruses, we developed a three-color Cre-, Flp- and Nigri- recombinase dependent reporter mouse line, Ai213. The delivery of three enhancer viruses driving these recombinases via a single retroorbital injection into a single Ai213 transgenic mouse results in labeling of three different neuronal classes/subclasses in the same brain tissue. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond

    Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex

    Get PDF
    Viral genetic tools to target specific brain cell types in humans and non-genetic model organisms will transform basic neuroscience and targeted gene therapy. Here we used comparative epigenetics to identify thousands of human neuronal subclass-specific putative enhancers to regulate viral tools, and 34% of these were conserved in mouse. We established an AAV platform to evaluate cellular specificity of functional enhancers by multiplexed fluorescent in situ hybridization (FISH) and single cell RNA sequencing. Initial testing in mouse neocortex yields a functional enhancer discovery success rate of over 30%. We identify enhancers with specificity for excitatory and inhibitory classes and subclasses including PVALB, LAMP5, and VIP/LAMP5 cells, some of which maintain specificity in vivo or ex vivo in monkey and human neocortex. Finally, functional enhancers can be proximal or distal to cellular marker genes, conserved or divergent across species, and could yield brain-wide specificity greater than the most selective marker genes

    A Systematic Screen for Tube Morphogenesis and Branching Genes in the Drosophila Tracheal System

    Get PDF
    Many signaling proteins and transcription factors that induce and pattern organs have been identified, but relatively few of the downstream effectors that execute morphogenesis programs. Because such morphogenesis genes may function in many organs and developmental processes, mutations in them are expected to be pleiotropic and hence ignored or discarded in most standard genetic screens. Here we describe a systematic screen designed to identify all Drosophila third chromosome genes (∼40% of the genome) that function in development of the tracheal system, a tubular respiratory organ that provides a paradigm for branching morphogenesis. To identify potentially pleiotropic morphogenesis genes, the screen included analysis of marked clones of homozygous mutant tracheal cells in heterozygous animals, plus a secondary screen to exclude mutations in general β€œhouse-keeping” genes. From a collection including more than 5,000 lethal mutations, we identified 133 mutations representing ∼70 or more genes that subdivide the tracheal terminal branching program into six genetically separable steps, a previously established cell specification step plus five major morphogenesis and maturation steps: branching, growth, tubulogenesis, gas-filling, and maintenance. Molecular identification of 14 of the 70 genes demonstrates that they include six previously known tracheal genes, each with a novel function revealed by clonal analysis, and two well-known growth suppressors that establish an integral role for cell growth control in branching morphogenesis. The rest are new tracheal genes that function in morphogenesis and maturation, many through cytoskeletal and secretory pathways. The results suggest systematic genetic screens that include clonal analysis can elucidate the full organogenesis program and that over 200 patterning and morphogenesis genes are required to build even a relatively simple organ such as the Drosophila tracheal system

    Integrating Physiological Regulation with Stem Cell and Tissue Homeostasis

    Get PDF
    Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation, also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology
    corecore