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Materials and Methods 

 Neurosurgical tissue acquisition. We receive regular acute neurosurgical brain tissue 

donations at the Allen Institute for Brain Science. These samples are excised as a matter of 

course to access the epileptic focus or tumor. All samples used in this study were derived from 

temporal cortex, most frequently middle temporal gyrus (MTG). These samples are immersed in 

pre-carbogenated ACSF.7 (recipe below), transported to the Allen Institute for Brain Science 

rapidly with carbogenation, and sliced on a compresstome (Precisionary Instruments, Greenville 

NC USA, catalog #VF-200) into 350 μm slices, and continuously carbogented in ACSF.7 until 

dissociation.  

 Bulk tissue ATAC-seq. We harvested MTG tissue slices after carbogen bubbling in 

ACSF.7 for up to 16 hours, and we treated with NeuroTrace 500/525 (catalog # N21480 from 

ThermoFisher Scientific, 1/100 in ACSF.7) to highlight layered cortex structure. With fine 

forceps we trimmed away white matter and meningeal tissues, and then dissected layers 1-6 

into six different low-binding Eppendorf 1.5 mL tubes (MilliporeSigma catalog # Z666548) under 

a fluorescence microscope as in Hodge et al. (Hodge et al., 2019). We discarded supernatant 

and replaced with 50-100 μL of Nextera DNA library reaction (#FC-121-1031 from Illumina) 

containing 0.1% IGEPAL-630 (NP-40 alternative), and then pipetted up and down vigorously 25-
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50 times using a P200 pipette, and then incubated at 37˚C for one hour for transposition. We 

then added 1 mL of Homogenization Buffer (recipe below) to quench the reaction, pelleted 

samples at 1000g for 5 minutes at 4˚C, resuspended samples in 1 mL fresh homogenization 

buffer, released nuclei from samples using ~10-15 strokes of a loose-fitting dounce pestle 

followed by ~10-15 strokes of a tight-fitting dounce pestle, then filtered nuclei with a 70 μm 

nylon mesh strainer, and pelleted nuclei at 1,000xg for 10 minutes at 4˚C. To stain, we 

resuspended nuclei in 500 μL of ice-cold Blocking Buffer (recipe below) containing 1/500 PE-

NeuN antibody (MilliporeSigma catalog # FCMAB317PE) and 1 μg/mL 4’-diamino-

phenylindazole (DAPI, MilliporeSigma catalog # D9542), rocked samples for 30 minutes at 4˚C, 

then pelleted at 1,000xg for 5 minutes at 4˚C, and finally resuspended samples in 500 μL fresh 

ice-cold blocking buffer before sorting cells on a FacsARIA III.  

 Using scatter profiles to eliminate debris and doublets, we sorted bulk samples as 

DAPI+NeuN+ from layers 1-6, or as DAPI+NeuN- from layer 1 and layer 5 samples, at 5,000-

10,000 cells per sample, into 200 μL of blocking buffer in low-binding Eppendorf 1.5 mL tubes. 

We pelleted sorted nuclei at 1,000xg for 10 minutes at 4˚C, followed by resuspension in 50 μL 

Proteinase K Cleanup Buffer (recipe below) and 37˚C incubation for 30 minutes, and then 

freezing at -20˚C until library prep and sequencing.  

 For library prep, we purified tagmented DNA with 1.8x vol/vol Ampure XP beads 

(Beckman-Coulter catalog # A63881), eluted DNA in 11 μL and then PCR-amplified with 

Nextera Index kit primers (#FC-121-1012 from Illumina) using KAPA HiFi HotStart ReadyMix 

(KAPA Biosystems #KK2602) in a 30 μL reaction (72° 3:00, 95° 1:00, cycle 17x [98° :20, 65° 

:15, 72° :15], 72° 1:00). We purified PCR products using 1.8x Ampure XP beads, and quantified 

libraries using Agilent BioAnalyzer High Sensitivity DNA Chips (catalog # 5067-4626). Then 

sample libraries were pooled evenly and sequenced with paired-end 50bp reads either on 

Illumina MiSeq (Allen Institute) or NextSeq machines (SeqMatic, Fremont CA USA). We 

processed fastq files as described below.  
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 Single nuclear ATAC-seq. We modified the single nuclear ATAC-seq workflow from the 

bulk sample workflow in several ways, most notably performing transposition reactions following 

sorting rather than prior to sorting, and omitting DAPI except for non-neuronal samples (due to 

the uncertainty of DAPI possibly interfering with transposition).  

We collected and dissected specific MTG tissue layers as for bulk samples, but we 

immediately dounced the layers to release nuclei, and then stained in blocking buffer containing 

PE-NeuN antibody but not DAPI. We sorted single NeuN+ nuclei from each layer into wells of a 

96-well plate, using scatter profiles to exclude debris and doublets. We confirmed single 

nucleus-to-event correspondence by test-sorting single NeuN+ events into flat-bottom 96 well 

plates with 40 μL blocking buffer containing DAPI followed by pelleting 1 min at 3,000xg and 

microscopic examination. These tests routinely yielded >95% single nucleus-filled wells and 

undetectable doublets. In the cases where glial cells were sorted, we first sorted neurons from 

the sample using PE-NeuN+ staining, and then treated with DAPI (1 μg/μL) for 1-2 minutes prior 

to sorting glial cells as DAPI+NeuN- events.  

 We sorted single NeuN+ cells into 1.5 μL of Nextera Tn5 transposition reaction (0.6 μL 

Tn5 enzyme, 0.75 μL tagmentation buffer, 0.15 μL 1% IGEPAL CA-630) in Eppendorf semi-

skirted 96-well plates (MilliporeSigma catalog # EP0030129504). Immediately following sorting 

we briefly centrifuged plates, vortexed, centrifuged plates again, and then incubated plates at 

37˚C for 30 minutes for transposition. After transposition we added 0.6 μL Proteinase K Cleanup 

Buffer (recipe below), vortexed briefly and centrifuged, and incubated at 40˚C for an additional 

30 minutes, then froze plates at -20 ˚C until library prep. Library prep for single nuclear samples 

was the same as for bulk samples, except we increased the number of amplification cycles from 

17 to 22 cycles due to the lower input DNA content.  

 Bulk ATAC-seq sample clustering. We called peaks on all 39 bulk samples from five 

independent specimens using MACS2 (Zhang et al., 2008), and then used DiffBind (Ross-Innes 

et al., 2012) to identify 73,742 differential peaks for all contrasts among the sample types (sort 
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strategies and specimens). Of these, 1,524 distinguished experimental specimens and were 

discarded for clustering. With 72,218 remaining peaks found specifically to discriminate any 

pairwise combinations of sort strategies, we reanalyzed correlation among bulk samples using 

reads in these peaks. This correlation matrix revealed groupings of non-neuronal samples, 

upper layer neuronal samples, and lower layer neuronal samples (Fig. S2C). One sample was 

omitted from this analysis (H17.03.009 L1 NeuN+) because this sample appeared intermediate 

between NeuN+ and NeuN- cells, likely due to a sorting error.  

 ATAC-seq data preprocessing and quality control. We retrieved sample-specific fastq 

files using standard built-in Illumina de-indexing protocols. We mapped each fastq file to human 

genome reference hg38 patch 7 using bowtie2 and the flags --no-mixed --no-discordant -X 2000 

to generate sample-specific bam files, which we then filtered for low-quality mappings, 

secondary mappings, and unmapped reads using samtools view -q 10 -F 256 -F 4, and then 

filtered for duplicate reads using samtools rmdup. We then converted these filtered reads bam 

files to bed files using bedTools bamToBed for quality control calculations of mean ENCODE 

overlap and TSS enrichment score. For mean ENCODE overlap we converted bed files to 

fragment format, and assessed the percentage of unique fragments that overlap with ENCODE 

project DNaseI hypersensitivity peaks from adult human frontal cortex (studies ENCSR000EIK 

and ENCSR000EIY, (The ENCODE Project Consortium, 2012; Sloan et al., 2016) using 

bedTools intersectBed (Quinlan and Hall, 2010), and took the mean of these two numbers. For 

TSS enrichment score we used the published technique of Chen et al (Chen et al., 2016). This 

technique sums the overlap of reads in 2kb windows surrounding all human TSSs, then 

segments this 2kb window into 40 50-bp bins, then normalizes the summed read counts to the 

outside four bins (first and last two), and finally reports the TSS enrichment score as the 

maximum height of that normalized read count graph. We noticed that this technique worked 

well for all bulk samples but gave spurious abnormally high scores for some single nuclei having 

low read count; as a result we made the modification to set TSS enrichment score to 1 (no 
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enrichment) for single nuclei having fewer than 500 reads or TSSs calculated to be greater than 

20 (likely spurious events).  

 We used these quality control metrics to filter out low quality nuclei (ENCODE overlap < 

15% AND TSS score < 4, Fig. S3). Additionally, we filtered out nuclei having fewer than 10,000 

unique read pairs, since we require this many reads for our clustering approach. Of 3,660 initial 

cells we confined analysis to 2,858 high quality nuclei for clustering.  

 Clustering single nuclei:  bootstrapped clustering. We clustered single nuclei using 

extended fragment Jaccard distance calculations among cells as implemented by the lowcat 

package (Graybuck et al., 2019). To accomplish this, we first excluded reads on chromosomes 

X, Y, and M to prevent differential chromosome-biased clustering. Then we randomly down-

sampled to 10,000 unique fragments per nucleus, and then these fragments were extended to a 

regularized length of 1,000 bp with the same center. With these lists of extended fragments we 

next calculated the Jaccard similarity score for each nucleus pair, defined as the quotient of the 

intersecting extended fragment number, by the extended fragment union number. Then we 

calculated Jaccard distances among all nucleus pairs as 1 minus Jaccard similarity score.  

Finally, this 2,858 x 2,858 Jaccard distance matrix was dimensionality reduced to a 2858 

x 29 matrix of principal component variates, using axes 2 through 30 calculated by princomp in 

the R base stats package. We omitted principal component 1 because it was highly correlated 

to quality control metrics, suggesting that this axis primarily reflected library quality (Fig. S4B-D). 

Principal components beyond 30 contain little cell type information, so excluding them 

represents a de-noising step (Fig. S4A). These resulting 29 PCs are used to call nuclear 

clusters and to visualize them using tSNE.  

To call cell clusters on this 2,858 x 29 principal component matrix, we bootstrapped an 

iterated PCA then Jaccard-Louvain clustering technique using k = 15 nearest neighbors (after 

testing k = 5,10,15,20, and finding 15 to give best visual separation of clusters on tSNE 

coordinates). We repeated each bootstrapping round 200 times, each time including only 80% 
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(2,286) of the nuclei, then performing PCA and using components 2 through 30 for Jaccard-

Louvain clustering. Finally, we tabulated the frequency with which each nucleus co-clusters with 

every other nucleus. This co-clustering frequency matrix was then hierarchically clustered by 

Euclidean distances, and 27 cell type clusters were called by manually cutting the tree using 

idendr0 (https://github.com/tsieger/idendr0) to represent visually apparent co-clustered blocks of 

nuclei (Fig. S4E, left). Manual tree-cutting outperformed automatic tree cutting with cutree in the 

R stats package using either branch height or cluster number specified, likely since clusters 

have nonuniform separation and tightness.  

Next we repeated this process with more stringent bootstrapping criteria: changing the 

percentage of cell to be re-clustered from 50-90%, and this analysis resulted in similar cluster 

structure and nucleus membership (Fig. S4E, middle, and Fig. S4F). In contrast, randomizing 

the Jaccard distance matrix prior to bootstrapped clustering yielded no clusters in the dataset 

(Fig. S4E, right). Together these analyses suggest that our identified clusters represent real and 

reproducible cell groups.  

Clustering single nuclei:  comparing choice of feature set. We also attempted to cluster 

nuclei using other feature sets besides Jaccard distances among cells (Fig. S4G). These 

additional feature sets included:  1) the list of all detected peaks from the entire aggregated 

dataset (236,588 peaks called using Homer findPeaks (Heinz et al., 2010) with -region flag), 2) 

the list of all RefSeq gene TSS regions, extended +/- 10kb (27,021 regions), 3) all 321,184 non-

overlapping 10kb windows across the human genome, and 4) the list of “gene bins” defined as 

the genomic region for each gene between the boundaries of midpoints between each RefSeq 

gene transcribed region. For each feature set, we computed counts in features for each cell, 

then identified principal components, and visualized groupings by tSNE of principal components 

2:50. For our dataset, Jaccard distances disclosed the qualitatively cleanest separation among 

nuclei, and among clusters (Fig. S4G). Furthermore, a wide range of tSNE perplexity values 

maintained these separations (Fig. S4H). 
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 Mapping clusters to transcriptomic cell types:  assimilating epigenetic and transcriptomic 

information. We wished to map our 2,858 high quality ATAC-seq profiled cells to human brain 

cell types discovered by large-scale RNA-seq studies (Hodge et al., 2019). To do this we first 

sought the best technique to manufacture gene-level information from the ATAC-seq data, in 

order to correlate with RNA-seq transcript counts. We tried four techniques: 1) read counts in 

RefSeq “gene bins” as above, 2) read counts in RefSeq gene bodies, 3) read counts in RefSeg 

gene TSS regions extended +/- 10 kb, and 4) Cicero gene activity scores (Cusanovich et al., 

2018; Pliner et al., 2018). With these four sets of gene-level information computed for the 10000 

fragment-downsampled library from each nucleus, we then mapped nuclei to RNA-seq cell 

types as the best correlated (highest Spearman correlation statistic) RNA-seq cluster (using 

median gene counts per million, CPM) with each nucleus, using each of four gene-level 

information vectors, resulting in four distinct mappings for each nucleus.  

We calculated this correlation using a set of 831 marker genes, which we chose to be 

both informative marker genes for RNA-seq clustering and to contain abundant epigenetic 

information. This was accomplished by using the select_markers function with default 

parameters from the scrattch.hicat R package (Tasic et al., 2018) which yielded 2,791 

transcriptomic marker genes, which was further filtered by intersecting with the top ten percent 

of genes with the highest summed Cicero gene activity scores across all 2,858 cells, to yield 

831 combined transcriptomic and epigenetic marker genes for mapping.  

The four sets of cellwise mappings yielded four tables of cell type abundances within our 

dataset. Next, taking the RNA-seq dataset (Hodge et al., 2019) as a true gold standard, we 

compared the four cell type abundance tables with the ‘expected’ cell type abundances, which 

was calculated as the sum of numbers of cells sorted in each sort strategy, times the expected 

cell type frequencies in each sort strategy. Correlating the four cell type abundance tables with 

the expected abundance table (pearson correlations of log-transformed abundance values plus 

one) revealed that, of the four techniques to compute gene-level information from ATAC-seq 
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data, Cicero gene activity scores supply the most dependable gene-level information for the 

purpose of epigenetic to transcriptomic mapping (Fig. S5A).  

Mapping clusters to transcriptomic cell types:  bootstrapping mapping for final mapping 

calls. Using Cicero gene activity scores, we bootstrapped the cellwise mapping procedure 100 

times with retention of a variable 50-90% of genes each round and applied the most frequently 

mapped transcriptomic cell type to each single ATAC-seq nucleus. Then we report the 

percentage of each cluster’s constituent cells mapping to each cell type in Fig. S5B, and 

summed by cell type subclass in Fig. S5D. 

We also performed clusterwise mapping for each of the 27 ATAC-seq clusters using the 

same bootstrapped mapping procedure, except that we aggregated Cicero gene activity scores 

by mean across cells within each cluster prior to mapping. We report the number of 100 times 

that each cluster is mapped to each cell type in Fig. S5C, and summed by transcriptomic 

subclass in Fig. S5E.  

We observe that clusterwise mapping largely agrees with, but is cleaner than, cellwise 

mapping (compare Fig. S5B and S5C, also S5D and S5E, and S5F); hence we elect clusterwise 

mapping as the final mapping procedure. Each cell is thus assigned a final mapped cell type 

subclass (shown in Fig. S5E) as a result of its ATAC-seq cluster membership. For all 

downstream analyses of peaks, we use aggregations at the cell type subclass level as in Fig. 

S5E.  

Peak calling. We called peaks on both bulk and aggregated single-nucleus data using 

Homer findPeaks with -region flag (Heinz et al., 2010). We found this program to be superior to 

Hotspot (v4), MACS2 (Zhang et al., 2008), and SICER 

(https://home.gwu.edu/~wpeng/Software.htm) to identify small regions corresponding to likely 

enhancers, while still capturing the peak boundaries. In preliminary experiments we observed 

that Hotspot returned small regions of a constant size (150bp or 250bp) that did not always align 

to peak summits, but it was relatively insensitive to read depth. MACS2 performed better than 
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hotspot at picking full peak sizes but peak numbers found were strongly dependent on read 

depth. SICER returned very large regions (median >2kb) that did not clearly correspond to 

visual peaks. Using Homer findPeaks with -region flag, peak sizes are median 300-500 bp 

across subclasses, and we observed only a shallow dependence of identified peak number on 

read depth.  

Identifying transcription factor motifs using chromVAR. We used chromVAR (Schep et 

al., 2017) to identify transcription factor motif accessibilities in our single nuclei. Using Homer 

findPeaks with -region flag, we called peaks on the aggregation of all single nuclear and bulk 

libraries (236,588 peaks), and then resized them to a standard 150bp size with the same center. 

We downloaded 452 transcription factor motifs from JASPAR (using JASPAR2018 R package, 

Tan, 2017), and 1,764 from cisBP (as included in the R package chromVARmotifs, Schep et al., 

2017), and used chromVAR to aggregate and quantify motif accessibilities in all 2,858 single 

nuclei. Cell type subclass-distinguishing motifs across were found by ranking subclass-

averaged motif accessibilities by standard deviation across subclasses (including DLX1, 

NEUROD6, RORB, and EMX2, Fig. S6A-D).  

 Characterization of peaks by conservation. With peaks called for each subclass, we 

calculated their phyloP scores as a measure of conservation. For peak phyloP scores, we used 

bigWigSummary to lookup phyloP values from hg38.phyloP4way.bw (Karolchik et al., 2004). 

These files quantify the basepair conservation across four mammals:  Homo sapiens, Mus 

musculus, Galeopterus variegatus (Malayan flying lemur), and Tupaia chinensis (Chinese tree 

shrew). We return ten values evenly spaced across each peak, and calculate the maximum 

mean of eight three-consecutive-value sets. This is done to find smaller regions on the order of 

100 bp highly conserved regions within each peak, and this technique yields greater deviations 

between real and random phyloP scores than taking a single peak-wise average alone. To 

compare conservation across groups of peaks, we subtracted the mean phyloP scores of 

randomized peak positions, from real peak phyloP scores (as in Fig. 2C).  
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Identifying transcriptomic cell type matches for methylation data. Using the dataset of 

Luo et al. (Luo et al., 2015), we correlated the published mCH gene body marker genes (their 

Supplementary Table 3 containing 1012 human and 1016 mouse methylation marker genes) 

with cluster-wise medians for transcriptomic human cell types (Hodge et al., 2019) and for 

mouse cell types (Tasic et al., 2018). We confined correlation analysis to the top 200 

methylation marker genes published by Luo et al. that also have highest variance among 

transcriptomic cell subclasses. With these genes, we then calculated Pearson correlation 

coefficients between normalized gene body mCH and RNA-seq clusterwise median CPM, and 

assigned the best matches as the most anti-correlated mCH and CPM vectors as in Fig. S7. 

Specificity of matches was calculated as the difference between the best anti-correlation and 

the second-best anti-correlation. This analysis was repeated for both human and mouse 

datasets independently. Importantly, our transcriptomic cell type assignments agree with the 

previously predicted subclasses by Luo et al.  

Quantifying ATAC-seq peak overlaps with DMRs. We first aggregated human DMRs 

from Luo et al. and Lister et al. (Lister et al., 2013; Luo et al., 2015). For neuron types, we 

downloaded DMRs and merged them using bedtools mergeBed. For non-neuron types, we 

downloaded raw fastq files from the GEO submission of Lister et al. (Lister et al., 2013) 

corresponding to bulk NeuN-negative cells from two human replicates (GSM1173774 and 

GSM1173777), and converted these to allc files using the pipeline analysis method of Luo et al. 

(Luo et al., 2017). These allc files were aggregated and used to find DMRs with methylpy 

DMRfind (minimum differentially methylated sites = 1) against allc files for all human subclasses 

from Luo et al., and an outgroup of human H1 cells from ENCODE. The same set of bulk non-

neuronal DMRs were used for comparison to the ATAC-seq data for Astrocytes, 

Oligodendrocytes/OPCs, and Microglia subclasses (Fig. S6I-J). 

 With bed files corresponding to each subclass ATAC-seq peakset and to each subclass 

DMR set, we used bedtools intersectbed to quantify the overlap between peaks and DMRs. We 
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bootstrapped calculation of real peak overlaps 100x by removing 20 percent of peaks each time 

and calculating percentage overlap, and the mean of these 100 measurements is reported. 

Similarly, we randomized peak positions throughout the genome 100x using bedtools 

shuffleBed, calculated percentage overlap each time, and the mean of these 100 

measurements is reported. By definition, disjoint ranges of real versus randomized peak overlap 

percentages established false discovery rate < 0.01. We also calculated enrichment of DMR 

overlaps for ATAC-seq peaksets, defined as the ratio of real peak-DMR overlap percentage to 

the overlap percentage of randomized peak positions.  

 Mouse to human cross-species comparisons. We used the sets of subclass-specific 

(uniquely identified in only that subclass) peaks to map between human and mouse subclasses. 

We first mapped subclass-specific mouse peaks to hg38 using liftOver. Then we bootstrapped 

calculation of human peak overlap against all mouse peaks 100x with random retention of 80% 

of human peaks each time, and we took mean of Jaccard similarity coefficients (intersection 

over union) over 100 runs. In addition, we shuffled genomic peak positions 100x, and calculated 

mean Jaccard similarity coefficients each time. We report the enrichment of Jaccard similarity 

coefficients as the ratio of the real over random (Fig. 2A). To visualize set intersections in Venn 

diagram format we display results using all mouse and human peaks (not subclass-specific, Fig. 

2B).  

For characterization of human conserved and divergent peaks, we start with all human 

peaks and partition to those intersecting (“Conserved”) or not intersecting (“Divergent”) with 

mouse peaks identified within the same orthologous subclass and mapped to hg38 by liftOver. 

To characterize mouse conserved and divergent peaks, we intersect all mouse peaks with 

reciprocal mm10-mapped human peaks. Then we calculated phyloP scores as above.  

De novo sequence motif identification. We used all mouse peaks and all human peaks to 

identify enriched sequence motifs using MEME-CHIP (Bailey et al., 2009). These motifs were 

then matched against known TF motifs in HOCOMOCO database v11 using TomTom. We then 
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filtered the MEME-CHIP output by first excluding all motifs with -log10(E-value) < 5; E-value 

represents the enrichment p-value (by Fisher’s exact test) times the number of candidate motifs 

tested. We further filtered by second excluding all motif matches with TFs not expressed 

(median CPM = 0) in that cell subclass from RNA-seq studies (Tasic et al., 2018; Hodge et al., 

2019). Third we filtered by excluding all low-confidence motif matches with E-value > 0.2 and q-

value > 0.2; q-value represents the minimal false discovery rate at which the observed similarity 

would be deemed significant. Finally, these filtered lists of all detected motifs in all cell 

subclasses were manually curated to a master list of all high-confidence identified TF motifs.  

Quantifying repetitive element overlap. To characterize the repetitive element overlap for 

peaks, we first partitioned mouse and human subclass-specific peaksets to conserved and 

divergent peaks. Then we calculated the overlap with repetitive genomic elements using hg38 

and mm10 RepeatMasker (v.4.0.5, http://www.repeatmasker.org) files, using a 100x 

bootstrapped overlap and 100x bootstrapped randomization strategy as described above for 

DMR overlap. Human L56IT peaks were omitted from this analysis because very few of these 

peaks are both subclass-specific and conserved. 

Cloning enhancers. Enhancers were chosen for cloning from epigenetic data using one 

of two strategies. For the first strategy we used the following criteria:  1) visible specific peak 

manually identified in read pileups adjacent to known subclass-specific marker genes, and 2) 

containing a region of high primary sequence conservation by phyloP score. For the second 

strategy we used the following criteria:  1)  a subclass-specific ATAC-seq peak identified by 

Homer (with -region flag) in both human and mouse (conserved) or only human (divergent), 2) a 

subclass-specific DMR in both human and mouse (conserved) or only human (divergent), 3) 

ranking by human ATAC-seq read counts within region, and 4) manual confirmation by 

visualization of read pileup by experimenter. 

Chosen enhancers were cloned into either scAAV or rAAV (ssAAV) expression vectors. 

For scAAV vectors we used a plasmid backbone that is a derivative of pscAAV-MCS (Cell 
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Biolabs catalog # VPK-430, for scAAV vectors), which was used for eHGT_017h, eHGT_019h, 

eHGT_022h/m, eHGT_023h, eHGT_025h, and hDLXI56i (Dimidschstein et al., 2016; Chan et 

al., 2017). For rAAV (ssAAV) vectors we used a plasmid backbone from Addgene plasmid 

number 51084 (AAV-hSyn1-GCaMP6s-P2A-nls-dTomato, which was itself originally derived 

from pAAV-GFP [Cell Biolabs catalog # VPK-410]).  We used this rAAV backbone for 

eHGT_058h, eHGT_064h, eHGT_078h/m, eHGT_079h, eHGT_082h, eHGT_096h, 

eHGT_098h, eHGT_128h, and eHGT_140h, hDLXI56i, and 3x(hDLXI56i core). Enhancers were 

inserted by standard Gibson assembly approaches, upstream of a minimal beta-globin promoter 

and the reporter SYFP2, a brighter EGFP alternative that is well tolerated in neurons (Kremers 

et al., 2006). NEB Stable cells (New England Biolabs # C3040I) were used for transformations 

and cultured at 32C. scAAV plasmids were monitored by restriction analysis and Sanger 

sequencing for occasional recombination of the left ITR; this left ITR recombination was not 

observed for rAAV plasmids. We attempted to boost expression level for some enhancers by 

engineering a triple tandem array of the enhancer core (“concatemer”), for example for 

3x(hDLXI56i core) as in Figure 5H,K.  

Virus production. Enhancer AAV plasmids were maxi-prepped and transfected with PEI 

Max 40K (Polysciences Inc., catalog # 24765-1) into one 15 cm plate of AAV-293 cells (Cell 

Biolabs catalog # AAV-100), along with helper plasmid pHelper (Cell BioLabs) and PHP.eB 

rep/cap packaging plasmid (Chan et al., 2017), with a total mass of 150 μg PEI Max 40K, 30 μg 

pHelper, 15 μg rep/cap plasmid, and 15 μg enhancer-AAV vector. The next day medium was 

changed to 1% FBS, and then after 5 days cells and supernatant were harvested and AAV 

particles released by three freeze-thaw cycles. Lysate was then treated with benzonase to 

degrade free DNA (2 μL benzonase, 30 min at 37C, MilliporeSigma catalog # E8263-25KU), 

and then cell debris was cleared with low-speed spin (1500g 10 min). The supernatant 

containing virus was concentrated over a 100 kDa molecular weight cutoff Centricon column 
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(MilliporeSigma catalog # Z648043) to a final volume of ~150 μL. For highly purified large-scale 

preps this protocol was altered so that ten plates were transfected and harvested together at 3 

days after transfection, and then the crude virus was purified by iodixanol gradient 

centrifugation.  

Mouse virus testing. Mice were retro-orbitally injected at P42-P49 with 10 μL 

(approximately 1x1011 genome copies) of crude virus prep diluted with 100 μL PBS, then 

sacrificed at 18-28 days post infection. For live epifluorescence, we perfused mice with ACSF.7 

and cut live 350 μm sections with a compresstome from one hemisphere to analyze reporter 

expression using a 10x objective on a Nikon Ti-Eclipse epifluorescence microscope with built-in 

real-time deconvolution image processing for thick tissues (Nikon Image Systems Elements 

software with Advanced Research module). For full sagittal section images of mouse brain, we 

processed the brain for mFISH HCR and anti-GFP immunostaining (as below), and using a 4x 

objective on an Olympus FV3000 confocal we took images in a 3x5 grid tiling the brain at two 

optical slices separated by 4 μm, and in ImageJ we performed z-projections using maximum 

intensity and stitched images using Grid stitching and linear blending fusion method. For 

antibody staining the other hemisphere was drop-fixed in 4% PFA in PBS for 4-6 hours at 4C, 

then cryoprotected in 30% sucrose in PBS 48-72 hours, then embedded in OCT for 3 hours at 

room temperature, then frozen on dry ice and sectioned at 10 μm thickness, prior to antibody 

stain using standard practice. We used the following primary antibodies: chicken anti-GFP 

(Aves # GFP-1020), rabbit anti-Parvalbumin (Swant # PV27), rabbit anti-Somatostatin 

(Peninsula Biolabs # T-4547), rabbit anti-VIP (BosterBio # RP1108), and mouse anti-RFP 

(abcam # ab65856) to detect mCherry from Gad2-T2a-NLS-mCherry mice (Peron et al., 2015). 

Secondary antibodies were 488-, 555-, and 647-conjugated secondary antibodies from 

ThermoFisher Scientific. We performed single-cell RNA-seq from the mouse visual cortex as 

described previously (Tasic et al., 2016, 2018). 
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Multiplexed FISH by hybridization chain reaction (mFISH-HCR). We performed this 

technique on mouse brain hemispheres fixed by immersion in 4% PFA in PBS for 4-6 hours at 

4C. After fixation, we rinsed hemispheres with PBS and stored them in PBS at 4C for up to 

one month. For sectioning, we embedded hemispheres in 1% low-melt agarose in PBS and cut 

50 μm sagittal sections on a Leica VT1000S vibratome in cold PBS buffer. We post-fixed 

sections in 4% PFA in PBS for 2 hours and then rinsed in PBS at room temperature, then 

dehydrated with 70% ethanol at 4C. Afterwards sections could be stored for up to a month in 

4C. For staining, we cleared sections with 8% SDS in PBS for 2 hours at room temperature 

then washed three times in 2x SSC for 1 hour each, then with Hybridization Buffer (Molecular 

Instruments) in a new well before applying Hybridization Buffer containing HCR Probes and 

hybridized overnight at 37C. The next day we washed samples with 30% Probe Wash Buffer 

for 1 hour at 37C, then rinsed with 2xSSC. During the probe wash, we denatured fluorescently 

labeled HCR hairpins at 95C for 90 seconds and then snap-cooled in a room temperature 

aluminum block tube holder for 30 minutes. We added the denatured hairpins to Amplification 

Buffer and applied to tissue sections for 2 hours at room temperature in the dark, then washed 

with 2x SSC containing DAPI, again with 2x SSC, and finally mounted on SuperFrost Plus slides 

in Prolong Glass Mounting medium (Thermo Fisher Scientific # P36980). We imaged these 

HCR stains with an Olympus FV3000 confocal microscope using manufacturer’s software. 

Molecular Instruments generated HCR probes against the following transcripts:  Rorb 

NM_001043354.2; Lamp5 NM_029530.2; Vip NM_011702.3; Pvalb NM_001330686.1; Sst 

NM_009215.1; Slc17a7 NM_182993.2; Gad1 NM_008077.5. 

Human ex vivo AAV vector testing. We transported neurosurgical temporal cortex 

samples from the operating suite to the Allen Institute in typically less than 30 minutes, using 

specialized transportation equipment to maintain sterility and carbogen bubbling throughout 

processing. Tissue samples were blocked and then sliced at 350 μm thickness and white matter 
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and pial membranes were dissected away. Slices then underwent warm recovery (bubbled 

ACSF.7 at 30 degrees for 15 minutes) followed by reintroduction of sodium (bubbled ACSF.8 at 

room temperature for 30 minutes, recipe below, (Ting et al., 2018). Slices were then plated at 

the gas interface on Millicell PTFE cell culture inserts (MilliporeSigma # PICM03050) in a 6-well 

dish on 1 mL of Slice Culture Medium (recipe below). After 30 minutes, slices were infected by 

direct application of high-titer AAV2/PHP.eB viral prep to the surface of the slice, 1 μL per slice. 

Slice culture medium was replenished every 2 days and reporter expression was monitored. For 

eHGT_022h in human, imaging and single cell RNA-seq was performed at 42 days in vitro. For 

hDLXI56i in human, imaging and single cell RNA-seq was performed in four independent 

experiments at 8, 13, 28, and 69 days in vitro. A fifth experiment on hDLXI56i (at 11 days in 

vitro) was excluded from analysis because 36/48 (75%) of sorted cells either failed to map to 

transcriptomic cell types, or mapped as uncertain non-neuronal types; this is likely due to either 

a failed sort or poor starting tissue quality given heterogeneity of patient samples.  

Single cell RNA-seq was accomplished on human virus-infected neurons by 1 hour 

digestion at 30ºC in carbogenated ACSF.1/trehalose + blockers + papain (all recipes below), 

followed by gentle trituration in Low-BSA Quench buffer, shallow spin gradient centrifugation 

(100g 10 minutes at room temperature) into High-BSA Quench buffer, and resuspension into 

Cell Resuspension Buffer. We also employed Myelin Bead Removal Kit II (Miltenyi catalog # 

130-096-733) at 1/20 to remove myelin debris, and PE-anti CD9 clone eBioSN4 (Thermo Fisher 

catalog # 12-0098-42) at 1/50 to sort away contaminating glial cells. Then we sorted single 

SYFP2+ labeled human neurons for sequencing using SMARTer V4 as previously described 

(Tasic et al., 2016, 2018). To map single cells to the transcriptomic taxonomies, we trained a 

nearest centroid classifier on cell type labels using human and mouse V1 scRNA-seq cluster 

labels (Tasic et al., 2018), employing informative marker genes chosen by the select.markers 

function in scrattch.hicat (Tasic et al., 2018). We confined taxonomy mapping analysis to the 

cells that passed cDNA library generation quality control metrics and showed detectable levels 
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of SYFP2 transcripts. Intermediate-mapping cells are represented as circles on nodes of the 

cluster dendrograms.  

In vivo non-human primate AAV vector testing. All procedures used with macaque 

monkeys conformed to the guidelines provided by the US National Institutes of Health and were 

approved by the University of Washington Animal Care and Use Committee. One rhesus 

macaque (Macaca mulatta) was injected with an AAV vector in ten injection sites during a single 

surgery. Two sites were located in left temporal cortex, three sites each in left and right occipital 

cortex, and one site each in left and right motor cortex. AAVs were purified by iodixanol gradient 

ultracentrifugation for this procedure. After craniotomy, using a pneumatic pico pump (World 

Precision Instruments) a total of 5 μL AAV vector was injected at each site with 500 nL expelled 

at each of ten depths evenly spaced from 2 mm to 200 μm deep beneath the pial surface. Sites 

were separated by ~1 cm in each region with multiple injection sites. Four sites are described in 

this manuscript (eHGT_079h, 128h, and 140h in occipital cortex, and 140h in temporal cortex). 

Fifty days after injection, the animal was sacrificed. We inspected the brain surface, cut tissue 

blocks (~2x2x2cm) around each visible fluorescent spot, and fixed each block 4% PFA in PBS 

for 24 hours at 4ºC. After PFA fixation, we embedded blocks in 2% agarose in PBS and cut 350 

μm sections and inspect each for fluorescent cells. We then cryopreserved a subset of sections 

in 30% sucrose in water overnight and subsectioned them on a sliding microtome to 30 μm for 

immunostaining using the following antibodies: chicken anti-GFP (Aves # GFP-1020), rabbit 

anti-Parvalbumin (Swant # PV27), and guinea pig anti-GABA (EMD Millipore # AB175). Images 

shown are from the region of high labeling close to the needle tract (<1 mm), but the zone of 

expression extended for ~3-4 mm orthogonal to the needle tract. Proper recovery of sites was 

confirmed by PCR on DNA from dissected fixed thick slices (recovered with QIAamp DNA FFPE 

Tissue Kit, Qiagen catalog # 56404 ) using common primers to all vectors:  F 5’-

ACTCCATCACTAGGGGTTCCTG and R 5’-GGACACGCTGAACTTGTGGC followed by 

Sanger sequencing with the nested reverse primer 5’-ACGTCGCCGTCCAGCTC.  
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Ex vivo non-human primate AAV vector testing. Brains from healthy Macaca nemestrina 

animals housed at the Washington National Primate Research Center (Seattle, WA) aged 2-15 

years were obtained through the Tissue Distribution Program. Whole hemispheres or tissue 

blocks were transported to the Allen Institute and processed for ex vivo culture and AAV vector 

testing as described above for human neurosurgical samples (Ting et al., 2018). Data are 

shown for cultures of MTG tissue. Cell subclass selectivity was evaluated by mFISH-HCR as 

described above for mouse, except that 350 μm cultured slices were cleared with 67% 2,2′-

thiodiethanol in water prior to mounting on slides for microscopy. Molecular Instruments 

designed probes with the following accession numbers provided to them: Slc17a7 NM_ 

005589901.2; Gad1 NM_ 005573441.2; Vip NM_ 005552161.2; Pvalb NM_ 005567398.2; Sst 

NM_ 005545442.2. 

Inferring GWAS-cell subclass associations. We used linkage disequilibrium score 

regression (LDSC, (Bulik-Sullivan et al., 2015; Finucane et al., 2015) to partition heritability of 

various brain conditions to regions associated with accessible chromatin in eleven human 

cortical cell subclasses, whose peaks are grouped into Conserved and Divergent subsets. As 

outgroup comparators, we also assessed the heritability associated with outgroup populations of 

human keratinocytes downloaded from ENCODE (The ENCODE Project Consortium, 2012). 

Additionally, we also performed this analysis using DMRs from human cortical neuron 

subclasses (Luo et al., 2017), human cortical non-neurons (Lister et al., 2013), and H1 human 

embryonic stem cells (The ENCODE Project Consortium, 2012).   

Summary statistics from 21 GWAS studies were acquired and evaluated including brain-

related (schizophrenia, major depressive disorder, autism spectrum disorder, ADHD, 

Alzheimer’s disease, Tourette’s syndrome, bipolar disorder, eating disorder, obsessive-

compulsive disorder, loneliness, BMI, PTSD) and non-brain-related diseases (Crohn’s disease 

and asthma) from the PGC and EMBL/EBI GWAS repositories (Anney et al., 2017; Autism 

Spectrum Disorder Working Group of the Psychiatry Genomics Consortium, 2015; Demenais et 
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al., 2018; Demontis; Duncan et al., 2017, 2018; Gao et al., 2017; International Obsessive 

Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative 

Genetics Association Studies (OCGAS), 2018; Lambert et al., 2013; de Lange et al., 2017; Lee 

et al., 2018; Liu et al., 2015; Major Depressive Disorder Working Group of the Psychiatric 

GWAS Consortium et al., 2013; Marioni et al., 2018; Okbay et al., 2016; Psychiatric GWAS 

Consortium Bipolar Disorder Working Group, 2011; Schizophrenia Psychiatric Genome-Wide 

Association Study (GWAS) Consortium, 2011; Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014; Tourette Association of America International Consortium for 

Genetics (TAAICG, 2018; Wray et al., 2018; Yang et al., 2017).  

We excluded studies with log10( N * h2 ) < 3.6, where N is number of patients in the study 

and h2 represents the sum of heritability across SNPs within the study, which represents the 

effective power of the study (Finucane et al., 2015). This exclusion removed 6 studies: asthma 

(Demenais et al., 2018), log10( N * h2 ) = 3.5), PTSD (Duncan et al., 2018), log10( N * h2 ) = 2.9), 

eating disorder (Duncan et al., 2017), log10( N * h2 ) = 3.5), loneliness (Gao et al., 2017), log10( N 

* h2 ) = 3.3), obsessive-compulsive disorder (International Obsessive Compulsive Disorder 

Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association 

Studies (OCGAS), 2018), log10( N * h2 ) = 3.5), and one major depressive disorder study (Major 

Depressive Disorder Working Group of the Psychiatric GWAS Consortium et al., 2013), log10( N 

* h2 ) = 3.3). The 15 studies with sufficient power for inclusion were all performed on a European 

descent population. Within these datasets, we confined analysis to 1,389,227 high-confidence 

SNPs present in the HapMap3 list, and using linkage disequilibrium maps from the 1000 

Genomes Project European descent individuals, we analyzed the trait and disease enrichments 

of cell subclass-associated chromatin along with the LDSC baseline model LDv2.0 with 75 

enumerated genomic feature categories. LDSC was performed to associate these 15 studies 

with both ATAC-seq peaks and methylation DMRs (Fig. S8, Lister et al., 2013; Luo et al., 2017), 

and both epigenetic data modalities gave qualitatively similar results although ATAC-seq peaks 
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give stronger enrichments. Generally weak associations were observed between the outgroup 

disease (Crohn’s disease) with brain cell types, and between the outgroup peak set 

(Keratinocytes, Fig. S8A,C, The ENCODE Project Consortium, 2012) and brain diseases. For 

statistical testing of enrichments, we use Bonferroni multiple hypothesis testing correction of 

LDSC’s block jackknife-estimated p-values, as previously suggested (Skene et al., 2018). This 

correction is 0.05 / 345 disease/subclass combinations = 1.45e-4 significance cutoff in Fig. S8C. 

We similarly use 180 and 150 tests in Fig. S8A and S8B. 

 

Buffer Recipes. 

Proteinase K Cleanup Buffer 
EDTA     50 mM 
Sodium chloride    5 mM 
Sodium dodecyl sulfate   1.25% (w/v) 
Proteinase K (Qiagen # 19131)  5 mg/mL 
pH 8.0 

 
Nuclei Isolation Medium 
Sucrose     250 mM 
Potassium chloride   25 mM 
Magnesium chloride   5 mM 
Tris-HCl     10 mM 
pH 8.0 
 
Homogenization Buffer 
10 mL Nuclei Isolation Medium 
0.1% (w/v) Triton X-100 
One pellet Roche Mini cOmplete EDTA-free (Sigma catalog # 4693159001) 
 
 
Blocking Buffer 
PBS 
0.5% (w/v) BSA (catalog # A2058 from Millipore Sigma) 
0.1% (w/v) Triton X-100 

 
ACSF.7  
HEPES     20 mM 
Sodium Pyruvate    3 mM 
Taurine     10 μM 
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Thiourea     2 mM 
D-(+)-glucose    25 mM 
Myo-inositol    3 mM 
Sodium bicarbonate   30 mM 
Calcium chloride dihydrate  0.5 mM  
Magnesium sulfate   10 mM 
Potassium chloride   2.5 mM 
Monosodium Phosphate   1.25 mM 
HCl     92 mM 
N-methyl-D-(+)-glucamine  92 mM 
L-ascorbic acid    5.0 mM 
N-acetyl-L-cysteine   12 mM 
pH adjusted to 7.3-7.4, osmolarity adjusted to 295-305, and carbogenated. 
 
ACSF.8  
HEPES     20 mM 
Sodium Pyruvate    3 mM 
Taurine     10 μM 
Thiourea     2 mM 
D-(+)-glucose    25 mM 
Myo-inositol    3 mM 
Sodium bicarbonate   30 mM 
Calcium chloride dihydrate  2.0 mM  
Magnesium sulfate   2.0 mM 
Potassium chloride   2.5 mM 
Monosodium Phosphate   1.25 mM 
Sodium chloride    92 mM 
L-ascorbic acid    5.0 mM 
N-acetyl-L-cysteine   12 mM 
pH adjusted to 7.3-7.4, osmolarity adjusted to 295-305, and carbogenated. 
 
Slice Culture Medium  
MEM Eagle medium powder  1680 mg (MilliporeSigma catalog # M4642) 
L-ascorbic acid powder   36 mg 
CaCl2, 2.0 M    100 μL 
MgSO4, 2.0 M    200 μL  
HEPES, 1.0 M    6.0 mL 
Sodium bicarbonate, 893 mM  3.36 mL 
D-(+)-glucose, 1.11 M   2.25 mL 
Pen/Strep 100x (5k U/mL)  1.0 mL  (Thermo catalog # 15070063) 
Tris base, 1.0 M    260 μL 
GlutaMAX 200 mM   0.5 mL  (Thermo catalog # 35050061)  
Bovine Pancreas Insulin, 10 mg/mL 20 μL  (MilliporeSigma catalog # I0516) 
Heat-inactivated horse serum  40 mL  (Thermo catalog # 26050088) 
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Deionized water    to 250 mL 
pH adjusted to 7.3-7.4, and osmolarity adjusted to 300-305, 
 
ACSF.1/trehalose  
HEPES     20 mM 
Sodium Pyruvate    3 mM 
Taurine     10 μM 
Thiourea     2 mM 
D-(+)-glucose    25 mM 
Myo-inositol    3 mM 
Sodium bicarbonate   25 mM 
Calcium chloride dihydrate  0.5 mM  
Magnesium sulfate   10 mM 
Potassium chloride   2.5 mM 
Monosodium Phosphate   1.25 mM 
Trehalose dihydrate   132 mM 
HCl     2.9 mM 
N-methyl-D-(+)-glucamine  30 mM 
L-ascorbic acid    5.0 mM 
N-acetyl-L-cysteine   12 mM 
pH adjusted to 7.3-7.4, and osmolarity adjusted to 295-305. 
 
ACSF.1/trehalose + blockers:  
50 mL ACSF.1/trehalose  
50 μL 100 μM TTX (final 0.1 μM) 
100 μL 25 mM DL-AP5 (final 50 μM) 
15 μL 60 mM DNQX (final 20 μM) 
5 μL 100 mM (+)-MK801 (final 10 μM) 
 
ACSF.1/trehalose + blockers + papain: 
15 mL ACSF.1/trehalose + blockers 
One vial Worthington PAP2 reagent (150 U, final 10U/mL) 
15 μL 10kU/mL DNase I (Roche) 
     
Low-BSA Quench buffer  
15 mL ACSF.1/trehalose + blockers 
15 μL 10kU/mL DNase I (Roche) 
150 μL 20% BSA dissolved in water (final conc 2 mg/mL) 
150 μL 10 mg/mL ovomucoid inhibitor (Sigma T9253, final concentration 0.1 mg/mL) 
 
High-BSA Quench buffer  
15 mL ACSF.1/trehalose + blockers 
15 μL 10kU/mL DNase I (Roche) 
750 μL 20% BSA dissolved in water (final concentration 10 mg/mL) 
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150 μL 10 mg/mL ovomucoid inhibitor (Sigma T9253, final concentration 0.1 mg/mL) 
 
ACSF.1/trehalose + EDTA 
HEPES     20 mM 
Sodium Pyruvate    3 mM 
Taurine     10 μM 
Thiourea     2 mM 
D-(+)-glucose    25 mM 
Myo-inositol    3 mM 
Sodium bicarbonate   25 mM 
Potasium chloride    2.5 mM 
Monosodium Phosphate   1.25 mM 
Trehalose     132 mM 
HCl     2.9 mM 
EDTA     0.25 mM 
N-methyl-D-(+)-glucamine  30 mM 
L-ascorbic acid    5.0 mM 
N-acetyl-L-cysteine   12 mM 
pH adjusted to 7.3-7.4, and osmolarity adjusted to 295-305. 
 
Cell Resuspension Buffer 
50 mL ACSF.1/trehalose + EDTA 
50 μL 100 μM TTX (final concentration 0.1 μM) 
100 μL 25 mM DL-AP5 (final concentration 50 μM) 
15 μL 60 mM DNQX (final concentration 20 μM) 
5 μL 100 mM (+)-MK801 (final concentration 10 μM) 
150 μL 20% BSA dissolved in water (final concentration 2 mg/mL) 
1 μg/mL 4’-diamino-phenylindazole (DAPI) 
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Supplementary Figure 1:  Profiling chromatin accessibility across multiple human 

temporal cortex tissue samples. 

A)  Summary table of 17 human neurosurgical specimens used for chromatin accessibility 

profiling experiments by ATAC-seq. De-identified specimen codes are given along with type of 

ATAC-seq experiments performed (Bulk or Single-nucleus), age, gender, patient disease 

requiring surgery, and region of tissue harvested.  

B)  Flow cytometry analysis of sorted nuclei demonstrating that tumor and epilepsy cases 

display qualitatively similar-staining nuclei, and quantitatively similar proportions of neuronal 

nuclei. On top, example flow plots from PE-anti NeuN and NeuroTrace 500/525-stained layer 5 

nuclei from one epilepsy and one tumor case. On bottom, percentages of nuclei labeled with 

anti-NeuN antibody from six dissected layers of cortex, from 12 specimens. Four specimens 

were not analyzed in this way, and one specimen (H18.03.005) was omitted from this analysis 

because of poor staining signal. 
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Supplementary Figure 2:  Bulk ATAC-seq data demonstrates differentially accessible 

chromatin elements around known marker genes, and in novel genomic regions. 

A)  snRNA-seq data (Hodge et al., 2019), aggregated into pseudo-bulk profiles by weighted 

averages of gene CPM medians for 75 transcriptomic clusters. Weights were assigned by their 

frequencies within the eight sort strategies, and the heatmap is scaled by z-score within each 

column (gene). Relative expressions of eight sort strategy-specific marker genes are displayed.  

B)  Example sort strategy-specific peaks proximal to (<50kb distance to gene body) the eight 

sort strategy-specific transcriptomic marker genes. Pileups indicate aggregated data within a 2 

kb genomic window across five independent experiments. In B and E, dashed lines indicate 

introns, thick lines indicate exons, and arrows indicate direction towards proximal marker gene. 

Yellow highlights demarcate sort strategy-specific chromatin accessibility peaks.  

C)  DiffBind (Ross-Innes et al., 2012) identification of 72,218 peaks that were differentially 

accessible among any pairwise comparison of sort strategies (FDR 0.01). Read counts within 

those 72,218 differentially accessible peaks then clustered samples using a correlation distance 

matrix, which revealed separate groupings of non-neuronal samples, and upper- and lower-

layer neuronal samples. One sample was omitted from this analysis (H17.03.009 L1 NeuN+) 

because this sample appeared intermediate between NeuN+ and NeuN- cells, suggesting a 

failed sort.  

D)  Number of peaks differentiating each pairwise sample contrast.  

E)  Example sort strategy-specific peaks resulting from pairwise DiffBind differential peak 

analysis. These peaks were found in novel genomic regions (not proximal to known marker 

genes), and closest genes are shown.  
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Supplementary Figure 3:  High quality single cell ATAC-seq libraries. 

A) Quality control metrics for bulk (left), all 3660 single nuclei (middle), and 2858 quality-filtered 

single nuclei (right). Metrics were ENCODE frontal cortex DNaseI hypersensitivity peak overlap 

percentage (x axis), and TSS enrichment score (y axis). Poor-quality single nuclei with TSS 

enrichment score < 4 AND ENCODE overlap < 15%, OR < 10000 unique mapped reads per 

nucleus were omitted. Plots are colored by sort strategy (top) or by specimen (bottom).  

B)  Sequencing statistics for 2858 quality-filtered single cells. Black lines represent mean across 

all 2858 nuclei. For total reads, six outlier nuclei with very high read counts were omitted from 

the graph. 
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Supplementary Figure 4:  High confidence clustering for single cell ATAC-seq data. 

A)  Histogram showing the percentages of variance explained by each principal component of 

the Jaccard single cell distance matrix. The first 30 principal components explain substantial 

variance within the dataset.  

B)  Correlation of the first five principal components with quality metrics. Principal component 1 

was omitted from further analysis due to strong negative correlation with ENCODE overlap. 

C)  Single nuclei evaluated by principal component analysis, with nuclei colored by cluster 

membership (left). Three major groups of nuclei were separated by PC2. Single nuclei were 

also colored by ENCODE overlap percentage, which is strongly negatively correlated with PC1 

(right).  

D)  tSNE plot to visualize either principal components 2 to 30 (left) or 1 to 30 (right). Note, PCs 2 

to 30 permit clear groupings with no ENCODE overlap gradient, whereas PCs 1 to 30 result in 

blurred cluster separations with a gradient of ENCODE spanning the clusters.  

E)  Bootstrapped iterative clustering to identify reproducible nuclear clusters. From the 2858 x 

29 matrix of nuclei x principal component scores, we subsampled to either a constant 80% of 

nuclei (left) or a variable 50-90% of nuclei (middle), and calculated clusters using Jaccard-

Louvain clustering (Tasic et al., 2018), which was repeated 200 times. Shuffled Jaccard 

distance matrix as input to PCA is shown (right). Heatmaps display the frequency of co-

clustering among nuclei. The constant 80% bootstrapping co-clustering matrix was used as 

input into Euclidean distance clustering, which yielded the final 27 clusters by cutting the tree to 

the major blocks of co-clustering nuclei. Nucleus order is not matched across the three plots. 

F)  Agreement between cluster memberships resulting from constant 80% bootstrapping and 

variable 50-90% bootstrapping, for most nuclei.  

G)  Visualization of nucleus groupings using five different feature sets (see Methods) using 

tSNE. Jaccard distances yielded clearest cell groupings. Cluster colors are applied in both (G) 

and (H). 
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H)  Different perplexity parameters for tSNE visualization of cell groupings. Nuclear cluster 

groupings are evident at a wide range of perplexity values.  

I)  Visualization of disease status (tumor or epilepsy) for nuclei. Note that nuclei largely intermix 

regardless of disease status. 
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Supplementary Figure 5:  Mapping ATAC-seq clusters to RNA-seq cell types. 

A)  Expected abundances of each of the 75 transcriptomic cell types (Hodge et al., 2019), 

correlated with observed abundances of those cell types, using four different methods for 

computing gene-level information from each nucleus:  far left: read counts in gene bins, middle 

left: read counts in gene bodies, middle right: read counts in 10kb-extended TSS regions, and 

far right: Cicero gene activity scores. Correlation values are Pearson correlation statistics 

between log-transformed expected and observed abundances plus one, for each of the 75 

transcriptomic cell types. Computing gene-level information using cicero gene activity scores 

results in the greatest correlation between expectation and observation for cell type 

abundances.   

B)  Bootstrapped mapping of single nuclei (“cellwise”) to 75 transcriptomic cell types.  Dot sizes 

indicate the frequencies of cell type mappings within each of the 27 ATAC-seq clusters.  

C)  Bootstrapped mapping of clusters (“clusterwise”) to 75 transcriptomic cell types.  Dot sizes 

indicate the frequency each cluster maps to each transcriptomic cell type. 

D)  Bootstrapped mapping of single nuclei (“cellwise”) to 11 transcriptomic cell type subclasses.  

Dot sizes indicate the frequencies of subclass mappings within each of the 27 ATAC-seq 

clusters. 

E)  Bootstrapped mapping of clusters (“clusterwise”) to 11 transcriptomic cell type subclasses.  

Dot sizes indicate the frequency each cluster maps to each subclass.  This plot represents the 

final mapped subclass assigned as the most frequent mapping for each cluster, which are used 

throughout the text.  

F)  Correlation of subclass mappings for all cells using four different mapping techniques. 

Overall, most cells are identically mapped to the same subclass with most of the techniques, 

with especially good agreement between both clusterwise mapping techniques. 

G)  Correlation between RNA-seq and ATAC-seq dataset layerwise distributions for the 11 

subclasses. Most of the subclasses are observed in similar layer distributions in both datasets.    
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Supplementary Figure 6:  Properties of human neocortical cell subclass-specific 

accessible genomic elements.  

A-D) Nuclei visualized by tSNE and colored by motif accessibilities for A) DLX1, B) NEUROD6, 

C) RORB, and D) EMX2 as calculated by chromVAR (Schep et al., 2017). Notice that DLX1 and 

EMX2 have similar recognition motifs and motif accessibility patterns among ATAC-seq cells. 

DLX1 transcripts are specifically detected in inhibitory neurons and EMX2 transcripts are 

specifically detected in astrocytes (Hodge et al., 2019).  

E-H) Correlation between motif accessibilities and transcript abundances across cell subclasses 

for E) DLX1, F) NEUROD6, G) RORB, and H) the group of DLX1 and EMX2 (grouping by 

average for motif accessibility, and by sum for transcript abundances). Notice that EMX2 motif 

accessibility in astrocytes likely explains the spurious astrocytic DLX1 motif accessibility in 

absence of astrocytic DLX1 expression (Fig. S6E), resulting in improved ATAC-RNA correlation 

for the combination of DLX1 and EMX2, as versus DLX1 alone. r, pearson correlation 

coefficient. Two-tailed paired t-tests for significant correlation:  DLX1 t = 3.0 df = 9 p < 0.01; 

NEUROD6 t = 5.4 df = 9 p < 0.001; RORB t = 2.2 df = 9 p = 0.05; DLX1 and EMX2 t = 5.3 df = 9 

p < 0.001.  

I)  Percent overlap of ATAC-seq peaks with previously identified DMRs (Lister et al., 2013; Luo 

et al., 2017), comparing real peaks to randomized peak positions. Absolute numbers of detected 

peaks and peak-DMR overlaps are shown. 

J)  Mean phyloP scores across all peaks for cell subclass ATAC-seq peaks, compared to 

randomized peak positions.  
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Supplementary Figure 7:  Mapping methylation cell types to RNA-seq cell types.  

Mouse and human cell types derived from mCH methylation data (Luo et al., 2017), mapped to 

RNA-seq derived cell types from human MTG (A) (Hodge et al., 2019) or mouse V1 (B) (Tasic 

et al., 2018). Specificity is defined as the difference between the best correlation and the 

second-best correlation among all the competing choices. For analysis in Figs S6 and S8, the 

methylation cell types were aggregated into transcriptomically defined subclasses according to 

their best matches shown here.  
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Supplementary Figure 8:  ATAC-seq peaks uncover strong associations between 

diseases and conserved accessible elements for human neocortical neuron subclasses.  

A-B) Associations between genome-wide association study diseases/traits and subclass ATAC-

seq peaksets (A) and methylation DMRs (B, Lister et al., 2013; Luo et al., 2017). Heatmap fill 

colors represent enrichments, which are defined as the ratio of the proportion of heritability 

contained by that peakset’s linked SNPs, to the proportion of that peakset’s linked SNPs, as 

calculated by LDSC (Bulik-Sullivan et al., 2015; Finucane et al., 2015). Red outlines 

demonstrate significant associations after performing Bonferroni correction for multiple 

hypothesis testing (180 tests for ATAC-seq peaks and 150 tests for DMRs). Widespread 

associations between multiple brain diseases and multiple cortical neuron subclasses are 

observed with both ATAC-seq peaks and DMRs. Strongest associations are seen for 

Alzheimer’s disease in microglial ATAC-seq peaks, and significant associations are seen for 

educational attainment and schizophrenia across multiple neuronal classes.  

C) Associations between conserved (also observed in mouse ATAC-seq) and divergent (not 

observed in mouse ATAC-seq) human ATAC-seq peaks, and genome-wide association study 

diseases/traits. Conserved human peaks display generally greater enrichment and more 

significant associations than do divergent human peaks, in particular for educational attainment 

and schizophrenia. A notable exception is microglia in Alzheimer’s disease, which shows 

greater enrichment in divergent peaks, although this enrichment does not pass statistical 

significance, possibly due to low overall total heritability and hence statistical power in 

Alzheimer’s studies. Bonferroni-corrected p-values are employed (345 tests performed).  

D) Total summed heritability of all SNPs associated with conserved peaks, versus those 

associated with divergent peaks, for three studies with multiple significant neuron subclass 

associations.  ***p < 0.01 by heteroscedastic t-test, t = 3.8, df = 45.6. 
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Supplementary Figure 9:  Accessible genomic elements disclose active chromatin 

regulators and mechanisms for neocortical gene expression changes across mammalian 

species.  

A)  Active transcriptional regulators in human and mouse brain cell subclasses, revealed by 

motifs in ATAC-seq peaks and gene expression by transcriptomics (Tasic et al., 2018; Hodge et 

al., 2019). E-value indicates the p-value from Fisher’s exact test, corrected for multiple testing 

as calculated by MEME-CHIP. Arrows indicate strong and specific microglial enrichments for 

SPI1/PU.1 (gray) and for TEAD in human astrocytes (brown) and for OLIG2 in 

oligodendrocytes/OPCs (cadet blue). 

B-C) Overlap of conserved or divergent peaks by cell subclass with multiple classes of repetitive 

genomic elements in both human (B) and mouse (C) sn/scATACseq datasets. An enrichment 

value of 1.0 corresponds to no fold change between real and random peak enrichment. Black 

bars represent the mean across the eleven neocortical cell subclasses. Heteroscedastic t-tests:  

*** p < 0.001, ** p < 0.01, ns not significant. Human all elements  t = 5.2, df = 14.5; human DNA 

transposons t = 3.4, df = 14.8; human LINE t = 5.3, df = 18.3; human SINE t = 3.8, df = 18.8; 

human LTR t = 6.1, df = 18.3; human satellite t = 0.2, df = 12.4; human simple t = 1.6, df = 10.1; 

mouse all elements  t = 3.7, df = 16.9; mouse DNA transposons t = 1.3, df = 12.7; mouse LINE t 

= 5.2, df = 18.5; mouse SINE t = 5.2, df = 18.0; mouse LTR t = 6.1, df = 17.5; mouse satellite t = 

1.6, df = 9.7; mouse simple t = 0.3, df = 19.0.  

  



L23L4 L56IT DL LAMP5 VIP SST PVALB A O M

eHGT_078h
140 cells
3 mice

eHGT_058h
120 cells
3 mice

# 
ce

lls
# 

ce
lls

# 
ce

lls
# 

ce
lls

# 
ce

lls
# 

ce
lls

# 
ce

lls

hDLXI56i
142 cells
3 mice

eHGT_019h
128 cells
3 mice

eHGT_017h
118 cells
3 mice

eHGT_128h
147 cells
3 mice

eHGT_064h
185 cells
4 mice

eHGT_079h
93 cells
2 mice

eHGT_082h
87 cells
2 mice

eHGT_140h
88 cells
2 mice

L23L4 L56IT DL LAMP5 VIP SST PVALB A O M

eHGT_025h
65 cells
3 mice

eHGT_023h
138 cells
3 mice

eHGT_096h
78 cells
3 mice



38 
 

Supplementary Figure 10:  Cell type validation of enhancer-AAV-labeled cells via scRNA-

seq. Numbers of sorted labeled cells with each enhancer-AAV vector shown in Figures 3 and 4 

and S11, mapped to the cell type transcriptomic taxonomy of mouse V1 (Tasic et al., 2018). 

Dendrogram leaves represent 111 transcriptomic cell types. Circles on the dendrogram 

represent the number of cells that could be mapped to that point in the dendrogram (starting 

from the root) and bar plots below the leaves represent the number of each cell type recovered 

that mapped to that final leaf.  
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Supplementary Figure 11:  A collection of LAMP5 subclass-specific enhancer-AAV 

vectors.  

A) Twelve putative LAMP5 enhancers identified from snATAC-seq data and cloned into AAV 

vectors. Four of the twelve (33%) exhibited high selectivity for LAMP5 cells in mouse retro-

orbital assay (indicated with green boxes).  

B-E) Positive labeling of Gad1+Lamp5+ cells (arrows) by each enhancer-AAV vector, as 

demonstrated by mFISH HCR in V1 L2/3. Percentages indicate the specificity of SYFP2 labeling 

for Gad1+Lamp5+ cells (n = 3 mice for eHGT_019h and 096h, and n = 1 for eHGT_098h).  

F-I) scRNA-seq in V1 confirms the transcriptomic cell subclass identity of enhancer-AAV vector-

labeled cells. Bargraph shows the percentage of single cells that map to a transcriptomic cell 

type within that subclass. In contrast, the percentages given in text are the percentage of cells 

recovered that expressed Gad1 and Lamp5.  

J)  Lamp5 mRNA expression pattern (Allen Institute public ISH data) shows multiple sites of 

expression throughout mouse brain. Abbreviations:  NE neocortical excitatory neurons, NI 

neocortical inhibitory neurons, HI hippocampal Inh neurons, BG basal ganglia, MB midbrain, MY 

medulla, P pons, HY hypothalamus.  

K-N) LAMP5-selective enhancers eHGT_025h and 096h label only Gad1+Lamp5+ cells in 

neocortex, but eHGT_019h and 098h also label various subcortical brain regions also seen in 

the endogenous Lamp5 mRNA expression pattern. Confocal images are shown except for L 

which is an epifluorescence image.  

 

 

 




