54 research outputs found
NGS-Trex : next generation sequencing transcriptome profile explorer
Background: Next-Generation Sequencing (NGS) technology has exceptionally increased the ability to sequence DNA in a massively parallel and cost-effective manner. Nevertheless, NGS data analysis requires bioinformatics skills and computational resources well beyond the possibilities of many "wet biology" laboratories. Moreover, most of projects only require few sequencing cycles and standard tools or workflows to carry out suitable analyses for the identification and annotation of genes, transcripts and splice variants found in the biological samples under investigation. These projects can take benefits from the availability of easy to use systems to automatically analyse sequences and to mine data without the preventive need of strong bioinformatics background and hardware infrastructure.Results: To address this issue we developed an automatic system targeted to the analysis of NGS data obtained from large-scale transcriptome studies. This system, we named NGS-Trex (NGS Transcriptome profile explorer) is available through a simple web interface http://www.ngs-trex.org and allows the user to upload raw sequences and easily obtain an accurate characterization of the transcriptome profile after the setting of few parameters required to tune the analysis procedure. The system is also able to assess differential expression at both gene and transcript level (i.e. splicing isoforms) by comparing the expression profile of different samples.By using simple query forms the user can obtain list of genes, transcripts, splice sites ranked and filtered according to several criteria. Data can be viewed as tables, text files or through a simple genome browser which helps the visual inspection of the data.Conclusions: NGS-Trex is a simple tool for RNA-Seq data analysis mainly targeted to "wet biology" researchers with limited bioinformatics skills. It offers simple data mining tools to explore transcriptome profiles of samples investigated taking advantage of NGS technologies. \ua9 2013 Mignone et al.; licensee BioMed Central Ltd
Metaproteomic characterization of the Vitis vinifera rhizosphere
The rhizosphere is a hotspot of microbial activity where the release of root exudates stimulates bacterial density and diversity. The majority of the bacterial cells in soil are viable, unculturable, but active. Proteomic tools could be useful in gaining information about microbial community activity and to better understand the real interactions between roots and soil. The aim of this work was to characterize the bacterial community associated with Vitis vinifera cv. Pinot Noir roots using a metaproteome approach. Our results confirmed the large potential of proteomics in describing the environmental microbial communities and their activities: in particular, we showed that bacteria belonging to Streptomyces, Bacillus, Bradyrhizobium, Burkholderia and Pseudomonas genera are the most active in protein expression. Concerning the biological activity of these genera in the rhizosphere, we observed the exclusive presence of the phosphorus metabolic process and the regulation of primary metabolic processes. To our knowledge, this is the first study reporting the rhizosphere proteome of V. vinifera, describing the bacterial community structure and activity of an important ecosystem for the Italian landscape, agriculture and economy
Climatic zone and soil properties determine the biodiversity of the soil bacterial communities associated to native plants from desert areas of north-central algeria
Algeria is the largest country in Africa characterized by semi-arid and arid sites, located in the North, and hypersaline zones in the center and South of the country. Several autochthonous plants are well known as medicinal plants, having in common tolerance to aridity, drought and salinity. In their natural environment, they live with a great amount of microbial species that altogether are indicated as plant microbiota, while the plants are now viewed as a \u201cholobiont\u201d. In this work, the microbiota of the soil associated to the roots of fourteen economically relevant autochthonous plants from Algeria have been characterized by an innovative metagenomic approach with a dual purpose: (i) to deepen the knowledge of the arid and semi-arid environment and (ii) to characterize the composition of bacterial communities associated with indigenous plants with a strong economic/commercial interest, in order to make possible the improvement of their cultivation. The results presented in this work highlighted specific signatures which are mainly determined by climatic zone and soil properties more than by the plant species
Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study
Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses
Effects of Nickel, Chlorpyrifos and Their Mixture on the Dictyostelium discoideum Proteome
Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes
- …