19 research outputs found

    Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice

    Get PDF
    Cystic fibrosis (CF) lung infection is a complex condition where opportunistic pathogens and defective immune system cooperate in developing a constant cycle of infection and inflammation. The major pathogen, Pseudomonas aeruginosa, secretes a multitude of virulence factors involved in host immune response and lung tissue damage. In this study, we examined the possible anti-inflammatory effects of molecules inhibiting P. aeruginosa virulence factors

    Toothbrushes may convey bacteria to the cystic fibrosis lower airways

    Get PDF
    Recent findings indicate that the oral cavity acts as a bacterial reservoir and might contribute to the transmission of bacteria to the lower airways. Control of a potentially pathogenic microbiota might contribute to prevent the establishment of chronic infection in cystic fibrosis. We evaluated the presence of CF microorganisms in saliva and toothbrushes of CF patients and verify their possible transmission to lower airways. Methods: We assessed the presence of P. aeruginosa, S. aureus, S. maltophilia, A. xylosoxidans, S. marcescens, and yeasts in saliva, toothbrushes and sputum of 38 CF patients and assessed the clonal identity of the strains occurring contemporary in multiple sites by PFGE. Results: At least one of the investigated species was isolated from 60 saliva samples and 23 toothbrushes. S. aureus was the most abundant species, followed by Candida spp. 31 patients contemporary had the same species in sputum and saliva/toothbrush: in most cases, clonal identity of the strains among the different sites was confirmed. Conclusion: Toothbrushes may be sources of oral contamination and might act as reservoirs favoring transmission of potentially pathogenic microorganisms from the environment to the oral cavity and eventually to the LAW. Oral hygiene and toothbrush care are important strategies to prevent CF lung infections

    Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts

    Get PDF
    Tailored nanoparticles offer a novel approach to fight antibiotic-resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram-negative Stenotrophomonas maltophilia [Sm-SeNPs()] and Gram-positive Bacillus mycoides [Bm-SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C. parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P. aeruginosa and Candida spp. The Sm-SeNPs() and Bm-SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch-SeNPs). Dendritic cells and fibroblasts exposed to Sm-SeNPs(), Bm-SeNPs(+) and Ch-SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro-inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P. aeruginosa or to facilitate the penetration of P. aeruginosa and Candida spp. biofilms by antimicrobial agents

    Achromobacter spp. adaptation in cystic fibrosis infection and candidate biomarkers of antimicrobial resistance

    Get PDF
    Achromobacter spp. can establish occasional or chronic lung infections in patients with cystic fibrosis (CF). Chronic colonization has been associated with worse prognosis highlighting the need to identify markers of bacterial persistence. To this purpose, we analyzed phenotypic features of 95 Achromobacter spp. isolates from 38 patients presenting chronic or occasional infection. Virulence was tested in Galleria mellonella larvae, cytotoxicity was tested in human bronchial epithelial cells, biofilm production in static conditions was measured by crystal violet staining and susceptibility to selected antibiotics was tested by the disk diffusion method. The presence of genetic loci associated to the analyzed phenotypic features was evaluated by a genome-wide association study. Isolates from occasional infection induced significantly higher mortality of G. mellonella larvae and showed a trend for lower cytotoxicity than chronic infection isolates. No significant difference was observed in biofilm production among the two groups. Additionally, antibiotic susceptibility testing showed that isolates from chronically-infected patients were significantly more resistant to sulfonamides and meropenem than occasional isolates. Candidate genetic biomarkers associated with antibiotic resistance or sensitivity were identified. Achromobacter spp. strains isolated from people with chronic and occasional lung infection exhibit different virulence and antibiotic susceptibility features, which could be linked to persistence in CF lungs. This underlines the possibility of identifying predictive biomarkers of persistence that could be useful for clinical purposes

    Protease inhibitors elicit anti-inflammatory effects in CF mice with Pseudomonas aeruginosa acute lung infection

    No full text
    Pseudomonas aeruginosa is the major respiratory pathogen in patients with cystic fibrosis (CF). P. aeruginosa secreted proteases, in addition to host proteases, degrade lung tissue and interfere with immune processes. In this study, we aimed at evaluating the possible anti-inflammatory effects of protease inhibitors Marimastat and Ilomastat in the treatment of P. aeruginosa infection

    Detection and quantification of hepatitis B virus DNA by SYBR green real-time polymerase chain reaction

    No full text
    Abstract A single-round real-time polymerase chain reaction (PCR) assay based on SYBR green dye technology for the detection and quantification of hepatitis B virus (HBV) DNA in serum was evaluated and compared with a qualitative nested PCR and the Cobas Amplicor HBV Monitor assay (Roche Molecular Diagnostics, Milan, Italy). The performance of the real-time PCR assay was evaluated in a routine clinical laboratory setting with a total of 212 clinical specimens. The sensitivity of the real-time PCR corresponded to 31 IU/ml (70 copies/ml), and comparison with the qualitative nested PCR showed significant concordance for 94% of samples. The linear curve over 7 log units, spanning 103–109 IU/ml (2.28×103 to 2.28×109 copies/ml), was observed in the quantitative determination. The interexperimental variability coefficient of the assay ranged from 0.22 to 0.39 and the intraexperimental variability coefficient from 0.24 to 0.41. By excluding values outside of the dynamic ranges of both tests, the HBV Monitor and the real-time PCR gave an agreement within ±1 log unit for 90% of samples, while those for the remaining 10% were found to be above 1 log unit but less than 1.5 log units. When the results inside and outside the dynamic range of the HBV Monitor were examined, 90% of the results were in agreement. In conclusion, the realtime PCR based on SYBR green technology proved suitable for routine diagnostic purposes, showing good sensitivity, high specificity, high reproducibility, and good linearity over a broad dynamic range of quantification

    The activity of daptomycin on Enterococcus faecium protoplasts: indirect evidence supporting a novel mode of action on lipoteichoic acid synthesis

    No full text
    The effect of daptomycin, an acidic lipopeptide antibiotic active against Gram-positives, was studied in Enterococcus faecium protoplasts. This antibiotic killed 99% of the protoplasts within 60 minutes of treatment, while vancomycin was ineffective, thus excluding peptidoglycan synthesis as the only target of the action of daptomycin. As previously seen with whole cells, in protoplasts lipoteichoic acid synthesis was the earliest and most strongly inhibited among types of macro-molecular synthesis. Radioactive daptomycin tightly bound only to the cytoplasmic membrane, in which the enzymes involved in lipoteichoic acid synthesis are located. These conclusions strongly support our previous proposal that daptomycin, though active against peptidoglycan synthesis, primarily inhibits lipoteichoic acid synthesis

    Detecting the presence of bacterial DNA by PCR can be useful in diagnosing culture-negative cases of infection, especially in patients with suspected infection and antibiotic therapy

    No full text
    Failing in bacteria isolation in a significant number of infections might be due to the involvement of microorganisms non-recoverable in culture media. The presence cannot be ruled out of non-dividing cells or even bacterial products still capable of promoting a host immunological response. Antibiotic therapy, for example, might induce a block of bacterial division and the impossibility of recovering cells in culture media. In these cases, a molecular method targeting DNA should be used. In this study, 230 clinical samples with a culture-negative report obtained from 182 patients were examined with a protocol of PCR targeting the bacterial 16S rDNA gene to evaluate the usefulness of molecular methods in differencing culture-negative infections from other pathologies. Amplicons were obtained in 14% of the samples although this percentage increased (27%) in a subgroup of patients with presumptive diagnosis of infection and ongoing antibiotic therapy. By multiplex PCR it was shown that detected DNA belonged mostly to Enterobacteriaceae and enterococcal species. Multiple culture-negative, PCR-positive samples and isolation of the same bacterial species in culture in additional samples from the same patient support the clinical significance of the data obtained and highlight the complementary role and usefulness of applying molecular methods in diagnostic microbiology. This article is protected by copyright. All rights reserved

    Achromobacter spp. prevalence and adaptation in cystic fibrosis lung infection

    No full text
    Bacteria belonging to the genus Achromobacter are widely distributed in natural environments and have been recognized as emerging pathogens for their contribution to a wide range of human infections. In particular, patients with cystic fibrosis (CF) are the subjects most frequently colonized by Achromobacter spp., which can cause persistent infections in their respiratory tract. Although many clinical aspects and pathogenic mechanisms still remain to be elucidated, Achromobacter spp. have been a source of expanding interest in recent years. This review examines the current literature regarding Achromobacter spp. role in CF, focusing on taxonomy, prevalence in CF lung infections, genomic characteristics, and adaptation strategies including modifications of metabolism and virulence, acquisition of antibiotic resistance, exchange of mobile genetic elements and development of hypermutation
    corecore