98 research outputs found

    Long-term survival rates of laryngeal cancer patients treated by radiation and surgery, radiation alone, and surgery alone : studied by lognormal and Kaplan-Meier survival methods

    Get PDF
    BACKGROUND: Validation of the use of the lognormal model for predicting long-term survival rates using short-term follow-up data. METHODS: 907 cases of laryngeal cancer were treated from 1973–1977 by radiation and surgery (248), radiation alone (345), and surgery alone (314), in registries of Connecticut and Metropolitan Detroit of the SEER database, with known survival status up to 1999. Phase 1 of this study used the minimum chi-square test to assess the goodness of fit of the survival times of those who died with disease to a lognormal distribution. Phase 2 used the maximum likelihood method to estimate long-term survival rates using short-term follow-up data. In order to validate the lognormal model, the estimated long-term cancer-specific survival rates (CSSR) were compared with the values calculated by the Kaplan-Meier (KM) method using long-term data. RESULTS: The 25-year CSSR were predicted to be 72%, 68% and 65% for treatments by radiation and surgery, by radiation alone, and by surgery alone respectively, using short-term follow-up data by the lognormal model. Corresponding results calculated by the KM method were: 72+/-3%, 68+/-3% and 66+/-4% respectively. CONCLUSIONS: The lognormal model was validated for the prediction of the long-term survival rates of laryngeal cancer patients treated by these different methods. The lognormal model may become a useful tool in research on outcomes

    Minimum follow-up time required for the estimation of statistical cure of cancer patients: verification using data from 42 cancer sites in the SEER database

    Get PDF
    BACKGROUND: The present commonly used five-year survival rates are not adequate to represent the statistical cure. In the present study, we established the minimum number of years required for follow-up to estimate statistical cure rate, by using a lognormal distribution of the survival time of those who died of their cancer. We introduced the term, threshold year, the follow-up time for patients dying from the specific cancer covers most of the survival data, leaving less than 2.25% uncovered. This is close enough to cure from that specific cancer. METHODS: Data from the Surveillance, Epidemiology and End Results (SEER) database were tested if the survival times of cancer patients who died of their disease followed the lognormal distribution using a minimum chi-square method. Patients diagnosed from 1973–1992 in the registries of Connecticut and Detroit were chosen so that a maximum of 27 years was allowed for follow-up to 1999. A total of 49 specific organ sites were tested. The parameters of those lognormal distributions were found for each cancer site. The cancer-specific survival rates at the threshold years were compared with the longest available Kaplan-Meier survival estimates. RESULTS: The characteristics of the cancer-specific survival times of cancer patients who died of their disease from 42 cancer sites out of 49 sites were verified to follow different lognormal distributions. The threshold years validated for statistical cure varied for different cancer sites, from 2.6 years for pancreas cancer to 25.2 years for cancer of salivary gland. At the threshold year, the statistical cure rates estimated for 40 cancer sites were found to match the actuarial long-term survival rates estimated by the Kaplan-Meier method within six percentage points. For two cancer sites: breast and thyroid, the threshold years were so long that the cancer-specific survival rates could yet not be obtained because the SEER data do not provide sufficiently long follow-up. CONCLUSION: The present study suggests a certain threshold year is required to wait before the statistical cure rate can be estimated for each cancer site. For some cancers, such as breast and thyroid, the 5- or 10-year survival rates inadequately reflect statistical cure rates, and highlight the need for long-term follow-up of these patients

    Short- and long-term cause-specific survival of patients with inflammatory breast cancer

    Get PDF
    BACKGROUND: Inflammatory breast cancer (IBC) had been perceived to have a poor prognosis. Oncologists were not enthusiastic in the past to give aggressive treatment. Single institution studies tend to have small patient numbers and limited years of follow-up. Most studies do not report 10-, 15- or 20-year results. METHODS: Data was obtained from the population-based database of the Surveillance, Epidemiology, and End Results program of the National Cancer Institute from 1975–1995 using SEER*Stat5.0 software. This period of 21 years was divided into 7 periods of 3 years each. The years were chosen so that there was adequate follow-up information to 2000. ICD-O-2 histology 8530/3 was used to define IBC. The lognormal model was used for statistical analysis. RESULTS: A total of 1684 patients were analyzed, of which 84% were white, 11% were African Americans, and 5% belonged to other races. Age distribution was < 30 years in 1%, 30–40 in 11%, 40–50 in 22%, 50–60 in 24%, 60–70 in 21%, and > 70 in 21%. The lognormal model was validated for 1975–77 and for 1978–80, since the 10-, 15- and 20-year cause-specific survival (CSS) rates, could be calculated using the Kaplan-Meier method with data available in 2000. The data were then used to estimate the 10-, 15- and 20-year CSS rates for the more recent years, and to study the trend of improvement in survival. There were increasing incidences of IBC: 134 patients in the 1975–77 period to 416 patients in the 1993–95 period. The corresponding 20-year CSS increased from 9% to 20% respectively with standard errors of less than 4%. CONCLUSION: The improvement of survival during the study period may be due to introduction of more aggressive treatments. However, there seem to be no further increase of long-term CSS, which should encourage oncologists to find even more effective treatments. Because of small numbers of patients, randomized studies will be difficult to conduct. The SEER population-based database will yield the best possible estimate of the trend in improvement of survival for patients with IBC

    Survival of patients with metastatic breast cancer: twenty-year data from two SEER registries

    Get PDF
    BACKGROUND: Many researchers are interested to know if there are any improvements in recent treatment results for metastatic breast cancer in the community, especially for 10- or 15-year survival. METHODS: Between 1981 and 1985, 782 and 580 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries of the Surveillance, Epidemiology, and End Results (SEER) database. The lognormal statistical method to estimate survival was retrospectively validated since the 15-year cause-specific survival rates could be calculated using the standard life-table actuarial method. Estimated rates were compared to the actuarial data available in 2000. Between 1991 and 1995, further 752 and 632 female patients with metastatic breast cancer were extracted respectively from the Connecticut and San Francisco-Oakland registries. The data were analyzed to estimate the 15-year cause-specific survival rates before the year 2005. RESULTS: The 5-year period (1981–1985) was chosen, and patients were followed as a cohort for an additional 3 years. The estimated 15-year cause-specific survival rates were 7.1% (95% confidence interval, CI, 1.8–12.4) and 9.1% (95% CI, 3.8–14.4) by the lognormal model for the two registries of Connecticut and San Francisco-Oakland respectively. Since the SEER database provides follow-up information to the end of the year 2000, actuarial calculation can be performed to confirm (validate) the estimation. The Kaplan-Meier calculation for the 15-year cause-specific survival rates were 8.3% (95% CI, 5.8–10.8) and 7.0% (95% CI, 4.3–9.7) respectively. Using the 1991–1995 5-year period cohort and followed for an additional 3 years, the 15-year cause-specific survival rates were estimated to be 9.1% (95% CI, 3.8–14.4) and 14.7% (95% CI, 9.8–19.6) for the two registries of Connecticut and San Francisco-Oakland respectively. CONCLUSIONS: For the period 1981–1985, the 15-year cause-specific survival for the Connecticut and the San Francisco-Oakland registries were comparable. For the period 1991–1995, there was not much change in survival for the Connecticut registry patients, but there was an improvement in survival for the San Francisco-Oakland registry patients

    A hybrid radiation detector for simultaneous spatial and temporal dosimetry

    Get PDF
    In this feasibility study an organic plastic scintillator is calibrated against ionisation chamber measurements and then embedded in a polymer gel dosimeter to obtain a quasi-4D experimental measurement of a radiation field. This hybrid dosimeter was irradiated with a linear accelerator, with temporal measurements of the dose rate being acquired by the scintillator and spatial measurements acquired with the gel dosimeter. The detectors employed in this work are radiologically equivalent; and we show that neither detector perturbs the intensity of the radiation field of the other. By employing these detectors in concert, spatial and temporal variations in the radiation intensity can now be detected and gel dosimeters can be calibrated for absolute dose from a single irradiation

    Disease-specific survival for limited-stage small-cell lung cancer affected by statistical method of assessment

    Get PDF
    BACKGROUND: In general, prognosis and impact of prognostic/predictive factors are assessed with Kaplan-Meier plots and/or the Cox proportional hazard model. There might be substantive differences from the results using these models for the same patients, if different statistical methods were used, for example, Boag log-normal (cure-rate model), or log-normal survival analysis. METHODS: Cohort of 244 limited-stage small-cell lung cancer patients, were accrued between 1981 and 1998, and followed to the end of 2005. The endpoint was death with or from lung cancer, for disease-specific survival (DSS). DSS at 1-, 3- and 5-years, with 95% confidence limits, are reported for all patients using the Boag, Kaplan-Meier, Cox, and log-normal survival analysis methods. Factors with significant effects on DSS were identified with step-wise forward multivariate Cox and log-normal survival analyses. Then, DSS was ascertained for patients with specific characteristics defined by these factors. RESULTS: The median follow-up of those alive was 9.5 years. The lack of events after 1966 days precluded comparison after 5 years. DSS assessed by the four methods in the full cohort differed by 0–2% at 1 year, 0–12% at 3 years, and 0–1% at 5 years. Log-normal survival analysis indicated DSS of 38% at 3 years, 10–12% higher than with other methods; univariate 95% confidence limits were non-overlapping. Surgical resection, hemoglobin level, lymph node involvement, and superior vena cava (SVC) obstruction significantly impacted DSS. DSS assessed by the Cox and log-normal survival analysis methods for four clinical risk groups differed by 1–6% at 1 year, 15–26% at 3 years, and 0–12% at 5 years; multivariate 95% confidence limits were overlapping in all instances. CONCLUSION: Surgical resection, hemoglobin level, lymph node involvement, and superior vena cava (SVC) obstruction all significantly impacted DSS. Apparent DSS for patients was influenced by the statistical methods of assessment. This would be clinically relevant in the development or improvement of clinical management strategies

    Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survival analysis methods such as the Kaplan-Meier method, log-rank test, and Cox proportional hazards regression (Cox regression) are commonly used to analyze data from randomized withdrawal studies in patients with major depressive disorder. However, unfortunately, such common methods may be inappropriate when a long-term censored relapse-free time appears in data as the methods assume that if complete follow-up were possible for all individuals, each would eventually experience the event of interest.</p> <p>Methods</p> <p>In this paper, to analyse data including such a long-term censored relapse-free time, we discuss a semi-parametric cure regression (Cox cure regression), which combines a logistic formulation for the probability of occurrence of an event with a Cox proportional hazards specification for the time of occurrence of the event. In specifying the treatment's effect on disease-free survival, we consider the fraction of long-term survivors and the risks associated with a relapse of the disease. In addition, we develop a tree-based method for the time to event data to identify groups of patients with differing prognoses (cure survival CART). Although analysis methods typically adapt the log-rank statistic for recursive partitioning procedures, the method applied here used a likelihood ratio (LR) test statistic from a fitting of cure survival regression assuming exponential and Weibull distributions for the latency time of relapse.</p> <p>Results</p> <p>The method is illustrated using data from a sertraline randomized withdrawal study in patients with major depressive disorder.</p> <p>Conclusions</p> <p>We concluded that Cox cure regression reveals facts on who may be cured, and how the treatment and other factors effect on the cured incidence and on the relapse time of uncured patients, and that cure survival CART output provides easily understandable and interpretable information, useful both in identifying groups of patients with differing prognoses and in utilizing Cox cure regression models leading to meaningful interpretations.</p

    Exploiting Mitochondrial Dysfunction for Effective Elimination of Imatinib-Resistant Leukemic Cells

    Get PDF
    Challenges today concern chronic myeloid leukemia (CML) patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells. Imatinib-resistant cells presented high glycolysis as compared to sensitive cells. Consistently, expression of key glycolytic enzymes, at least partly mediated by HIF-1Ξ±, was modified in imatinib-resistant cells suggesting that imatinib-resistant cells uncouple glycolytic flux from pyruvate oxidation. Interestingly, mitochondria of imatinib-resistant cells exhibited accumulation of TCA cycle intermediates, increased NADH and low oxygen consumption. These mitochondrial alterations due to the partial failure of ETC were further confirmed in leukemic cells isolated from some imatinib-resistant CML patients. As a consequence, mitochondria generated more ROS than those of imatinib-sensitive cells. This, in turn, resulted in increased death of imatinib-resistant leukemic cells following in vitro or in vivo treatment with the pro-oxidants, PEITC and Trisenox, in a syngeneic mouse tumor model. Conversely, inhibition of glycolysis caused derepression of respiration leading to lower cellular ROS. In conclusion, these findings indicate that imatinib-resistant leukemic cells have an unexpected mitochondrial dysfunction that could be exploited for selective therapeutic intervention
    • …
    corecore