14 research outputs found

    An application of decision trees method for fault diagnosis of induction motors

    Get PDF
    Decision tree is one of the most effective and widely used methods for building classification model. Researchers from various disciplines such as statistics, machine learning, pattern recognition, and data mining have considered the decision tree method as an effective solution to their field problems. In this paper, an application of decision tree method to classify the faults of induction motors is proposed. The original data from experiment is dealt with feature calculation to get the useful information as attributes. These data are then assigned the classes which are based on our experience before becoming data inputs for decision tree. The total 9 classes are defined. An implementation of decision tree written in Matlab is used for these data

    Machine condition prognosis based on regression trees and one-step-ahead prediction

    Get PDF
    Predicting degradation of working conditions of machinery and trending of fault propagation before they reach the alarm or failure threshold is extremely importance in industry to fully utilize the machine production capacity. This paper proposes a method to predict future conditions of machines based on one-step-ahead prediction of time-series forecasting techniques and regression trees. In this study, the embedding dimension is firstly estimated in order to determine the necessary available observations for predicting the next value in the future. This value is subsequently utilized for regression tree predictor. Real trending data of low methane compressor acquired from condition monitoring routine are employed for evaluating the proposed method. The results indicate that the proposed method offers a potential for machine condition prognosi

    Fabrication and evaluation of bilateral Helmholtz radiofrequency coil for thermo-stable breast image with reduced artifacts

    Get PDF
    PURPOSE: The positron emission tomography (PET)-magnetic resonance (MR) system is a newly emerging technique that yields hybrid images with high-resolution anatomical and metabolic information. With PET-MR imaging, a definitive diagnosis of breast abnormalities will be possible with high spatial accuracy and images will be acquired for the optimal fusion of anatomic locations. Therefore, we propose a PET-compatible two-channel breast MR coil with minimal disturbance to image acquisition which can be used for simultaneous PET-MR imaging in patients with breast cancer. MATERIALS AND METHODS: For coil design and construction, the conductor loops of the Helmholtz coil were tuned, matched, and subdivided with nonmagnetic components. Element values were optimized with an electromagnetic field simulation. Images were acquired on a GE 600 PET-computed tomography (CT) and GE 3.0 T MR system. For this study, we used the T1-weighted image (volunteer; repetition time (TR), 694 ms; echo time (TE), 9.6 ms) and T2-weighted image (phantom; TR, 8742 ms; TE, 104 ms) with the fast spin-echo sequence. RESULTS: The results of measuring image factors with the proposed radiofrequency (RF) coil and standard conventional RF coil were as follows: signal-to-noise ratio (breast; 207.7 vs. 175.2), percent image uniformity (phantom; 89.22%-91.27% vs. 94.63%-94.77%), and Hounsfield units (phantom; -4.51 vs. 2.38). CONCLUSIONS: Our study focused on the feasibility of proposed two-channel Helmholtz loops (by minimizing metallic components and soldering) for PET-MR imaging and found the comparable image quality to the standard conventional coil. We believe our work will help significantly to improve image quality with the development of a less metallic breast MR coil

    Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference

    Get PDF
    This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART-ANFIS model has potential for fault diagnosis of induction motors

    Machine condition prognosis based on regression trees and one-step-ahead prediction

    Get PDF
    Predicting the degradation of working conditions of machinery and trending of fault propagation before they reach the alarm or failure threshold is extremely important in industry to fully utilize the machine production capacity. This paper proposes a method to predict the future conditions of machines based on one-step-ahead prediction of time-series forecasting techniques and regression trees. In this study, the embedding dimension is firstly estimated in order to determine the necessarily available observations for predicting the next value in the future. This value is subsequently utilized for the predictor which is generated by using regression tree technique. Real trending data of low methane compressor acquired from condition monitoring routine are employed for evaluating the proposed method. The results indicate that the proposed method offers a potential for machine condition prognosis
    corecore