156 research outputs found

    The Efficacy and Safety of Moderate-Intensity Rosuvastatin with Ezetimibe versus High-Intensity Rosuvastatin in High Atherosclerotic Cardiovascular Disease Risk Patients with Type 2 Diabetes Mellitus: A Randomized, Multicenter, Open, Parallel, Phase 4 Study

    Get PDF
    Background To investigate the efficacy and safety of moderate-intensity rosuvastatin/ezetimibe combination compared to highintensity rosuvastatin in high atherosclerotic cardiovascular disease (ASCVD) risk patients with type 2 diabetes mellitus (T2DM). Methods This study was a randomized, multicenter, open, parallel phase 4 study, and enrolled T2DM subjects with an estimated 10-year ASCVD risk ≥7.5%. The primary endpoint was the low-density lipoprotein cholesterol (LDL-C) change rate after 24-week rosuvastatin 10 mg/ezetimibe 10 mg treatment was non-inferior to that of rosuvastatin 20 mg. The achievement proportion of 10-year ASCVD risk <7.5% or comprehensive lipid target (LDL-C <70 mg/dL, non-high-density lipoprotein cholesterol <100 mg/dL, and apolipoprotein B <80 mg/dL) without discontinuation, and several metabolic parameters were explored as secondary endpoints. Results A hundred and six participants were assigned to each group. Both groups showed significant reduction in % change of LDL-C from baseline at week 24 (–63.90±6.89 vs. –55.44±6.85, combination vs. monotherapy, p=0.0378; respectively), but the combination treatment was superior to high-intensity monotherapy in LDL-C change (%) from baseline (least square [LS] mean difference, –8.47; 95% confidence interval, –16.44 to –0.49; p=0.0378). The combination treatment showed a higher proportion of achieved comprehensive lipid targets rather than monotherapy (85.36% vs. 62.22% in monotherapy, p=0.015). The ezetimibe combination significantly improved homeostasis model assessment of β-cell function even without A1c changes (LS mean difference, 17.13; p=0.0185). Conclusion In high ASCVD risk patients with T2DM, the combination of moderate-intensity rosuvastatin and ezetimibe was not only non-inferior but also superior to improving dyslipidemia with additional benefits compared to high-intensity rosuvastatin monotherapy

    Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition

    Get PDF
    Nur, a member of the Fur family, is a nickel-responsive transcription factor that controls nickel homeostasis and anti-oxidative response in Streptomyces coelicolor. Here we report the 2.4-Å resolution crystal structure of Nur. It contains a unique nickel-specific metal site in addition to a nonspecific common metal site. The identification of the 6-5-6 motif of the Nur recognition box and a Nur/DNA complex model reveals that Nur mainly interacts with terminal bases of the palindrome on complex formation. This contrasts with more distributed contacts between Fur and the n-1-n type of the Fur-binding motif. The disparity between Nur and Fur in the conformation of the S1-S2 sheet in the DNA-binding domain can explain their different DNA-recognition patterns. Furthermore, the fact that the specificity of Nur in metal sensing and DNA recognition is conferred by the specific metal site suggests that its introduction drives the evolution of Nur orthologs in the Fur family

    GSK3B induces autophagy by phosphorylating ULK1

    Get PDF
    Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells. Here, we report that following insulin withdrawal, GSK3B directly interacted with and activated ULK1 via phosphorylation of S405 and S415 within the GABARAP-interacting region. Phosphorylation of these residues facilitated the interaction of ULK1 with MAP1LC3B and GABARAPL1, while phosphorylation-defective mutants of ULK1 failed to do so and could not induce autophagy flux. Furthermore, high phosphorylation levels of ULK1 at S405 and S415 were observed in human pancreatic cancer cell lines, all of which are known to exhibit high levels of autophagy. Our results reveal the importance of GSK3B-mediated phosphorylation for ULK1 regulation and autophagy induction and potentially for tumorigenesis. © 2021, The Author(s).1

    Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai

    No full text
    Antimicrobial peptides are a pivotal component of the invertebrate innate immune system. In this study, we identified a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) gene from the pacific abalone Haliotis discus hannai (HDH), which is involved in the pattern recognition mechanism and plays avital role in the defense mechanism of invertebrates immune system. The HDH-LGBP cDNA consisted of a 1263-bp open reading frame (ORF) encoding a polypeptide of 420 amino acids, with a 20-amino-acid signal sequence. The molecular mass of the protein portion was 45.5 kDa, and the predicted isoelectric point of the mature protein was 4.93. Characteristic potential polysaccharide binding motif, glucanase motif, and β-glucan recognition motif were identified in the LGBP of HDH. We used its polysaccharide-binding motif sequence to design two novel antimicrobial peptide analogs (HDH-LGBP-A1 and HDH-LGBP-A2). By substituting a positively charged amino acid and amidation at the C-terminus, the pI and net charge of the HDH-LGBP increased, and the proteins formed an α-helical structure. The HDH-LGBP analogs exhibited antibacterial and antifungal activity, with minimal effective concentrations ranging from 0.008 to 2.2 μg/mL. Additionally, both were toxic against human cervix (HeLa), lung (A549), and colon (HCT 116) carcinoma cell lines but not much on human umbilical vein cell (HUVEC). Fluorescence-activated cell sorter (FACS) analysis showed that HDH-LGBP analogs disturb the cancer cell membrane and cause apoptotic cell death. These results suggest the use of HDH-LGBP analogs as multifunctional drugs

    T cell antigen receptors of Japanese flounder, Paralichthys olivaceus

    No full text

    Cloning of biodefense and immune-related genes of Japanese flounder, Paralichthys olivaceus

    No full text
    A Japanese flounder Paralichthys olivaceus cDNA library was constructed from leukocytes that had been previously infected with hirame rhabdovirus (HRV). Eight hundred ninety six independent clones were isolated from which 1,237 sequence reads were obtained. These sequences consist of a total of 925,169 base pairs with an average sequence length of 758 base pairs. Six hundred three (67.3%) of the clones showed significant similarity to previously reported genes. These identified clones were derived from 350 distinct genes, in which 52 clones were considered as putative biodefense and immune-related genes. Forty-one of 52 putative biodefense and immune-related genes, including several clusters of differentiation (CDs), interleukin receptor, TNF receptor, and transcription factors, have not been previously reported in cDNA copies of fish genes
    corecore