2 research outputs found

    Emotion word processing: does mood make a difference?

    Get PDF
    Visual emotion word processing has been in the focus of recent psycholinguistic research. In general, emotion words provoke differential responses in comparison to neutral words. However, words are typically processed within a context rather than in isolation. For instance, how does one's inner emotional state influence the comprehension of emotion words? To address this question, the current study examined lexical decision responses to emotionally positive, negative, and neutral words as a function of induced mood as well as their word frequency. Mood was manipulated by exposing participants to different types of music. Participants were randomly assigned to one of three conditions—no music, positive music, and negative music. Participants' moods were assessed during the experiment to confirm the mood induction manipulation. Reaction time results confirmed prior demonstrations of an interaction between a word's emotionality and its frequency. Results also showed a significant interaction between participant mood and word emotionality. However, the pattern of results was not consistent with mood-congruency effects. Although positive and negative mood facilitated responses overall in comparison to the control group, neither positive nor negative mood appeared to additionally facilitate responses to mood-congruent words. Instead, the pattern of findings seemed to be the consequence of attentional effects arising from induced mood. Positive mood broadens attention to a global level, eliminating the category distinction of positive-negative valence but leaving the high-low arousal dimension intact. In contrast, negative mood narrows attention to a local level, enhancing within-category distinctions, in particular, for negative words, resulting in less effective facilitation

    Analysis of Linear Electrode Array EMG for Assessment of Hemiparetic Biceps Brachii Muscles

    Get PDF
    This study presents a frequency analysis of surface electromyogram (EMG) signals acquired by a linear electrode array from the biceps brachii muscles bilaterally in 14 hemiparetic stroke subjects. For different levels of isometric contraction ranging from 10% to 80% of the maximum voluntary contraction (MVC), the power spectra of 19 bipolar surface EMG channels arranged proximally to distally along the muscle fibers were examined in both paretic and contralateral muscles. It was found that across all stroke subjects, the median frequency (MF) and the mean power frequency (MPF), averaged from different surface EMG channels, were significantly smaller in the paretic muscle compared to the contralateral muscle at each of the matched percent MVC contractions. The muscle fiber conduction velocity (MFCV) was significantly slower in the paretic muscle than in the contralateral muscle. No significant correlation between the averaged MF, MPF or MFCV versus torque was found in both paretic and contralateral muscles. However, there was a significant positive correlation between the global MFCV and MF. Examination of individual EMG channels showed that electrodes closest to the estimated muscle innervation zones produced surface EMG signals with significantly higher MF and MPF than more proximal or distal locations in both paretic and contralateral sides. These findings suggest complex central and peripheral neuromuscular alterations (such as selective loss of large motor units, disordered control of motor units, increased motor unit synchronization, and atrophy of muscle fibers, etc.) which can collectively influence the surface EMG signals. The frequency difference with regard to the innervation zone also confirms the relevance of electrode position in surface EMG analysis
    corecore