1,223 research outputs found

    Flight Mechanics and Control of Escape Manoeuvres in Hummingbirds. II. Aerodynamic Force Production, Flight Control and Performance Limitations

    Get PDF
    The superior manoeuvrability of hummingbirds emerges from complex interactions of specialized neural and physiological processes with the unique flight dynamics of flapping wings. Escape manoeuvring is an ecologically relevant, natural behaviour of hummingbirds, from which we can gain understanding into the functional limits of vertebrate locomotor capacity. Here, we extend our kinematic analysis of escape manoeuvres from a companion paper to assess two potential limiting factors of the manoeuvring performance of hummingbirds: (1) muscle mechanical power output and (2) delays in the neural sensing and control system. We focused on the magnificent hummingbird (Eugenes fulgens, 7.8 g) and the black-chinned hummingbird (Archilochus alexandri, 3.1 g), which represent large and small species, respectively. We first estimated the aerodynamic forces, moments and the mechanical power of escape manoeuvres using measured wing kinematics. Comparing active-manoeuvring and passive-damping aerodynamic moments, we found that pitch dynamics were lightly damped and dominated by the effect of inertia, while roll dynamics were highly damped. To achieve observed closed-loop performance, pitch manoeuvres required faster sensorimotor transduction, as hummingbirds can only tolerate half the delay allowed in roll manoeuvres. Accordingly, our results suggested that pitch control may require a more sophisticated control strategy, such as those based on prediction. For the magnificent hummingbird, we estimated that escape manoeuvres required muscle mass-specific power 4.5 times that during hovering. Therefore, in addition to the limitation imposed by sensorimotor delays, muscle power could also limit the performance of escape manoeuvres

    Optically Thin Metallic Films for High-radiative-efficiency Plasmonics

    Get PDF
    Plasmonics enables deep-subwavelength concentration of light and has become important for fundamental studies as well as real-life applications. Two major existing platforms of plasmonics are metallic nanoparticles and metallic films. Metallic nanoparticles allow efficient coupling to far field radiation, yet their synthesis typically leads to poor material quality. Metallic films offer substantially higher quality materials, but their coupling to radiation is typically jeopardized due to the large momentum mismatch with free space. Here, we propose and theoretically investigate optically thin metallic films as an ideal platform for high-radiative-efficiency plasmonics. For far-field scattering, adding a thin high-quality metallic substrate enables a higher quality factor while maintaining the localization and tunability that the nanoparticle provides. For near-field spontaneous emission, a thin metallic substrate, of high quality or not, greatly improves the field overlap between the emitter environment and propagating surface plasmons, enabling high-Purcell (total enhancement > 10410^4), high-quantum-yield (> 50 %) spontaneous emission, even as the gap size vanishes (3\sim5 nm). The enhancement has almost spatially independent efficiency and does not suffer from quenching effects that commonly exist in previous structures.Comment: Supporting Information not included but freely available from DOI:10.1021/acs.nanolett.6b0085

    Statistical Origin of Constituent-Quark Scaling in the QGP hadronization

    Full text link
    Nonextensive statistics in a Blast-Wave model (TBW) is implemented to describe the identified hadron production in relativistic p+p and nucleus-nucleus collisions. Incorporating the core and corona components within the TBW formalism allows us to describe simultaneously some of the major observations in hadronic observables at the Relativistic Heavy-Ion Collider (RHIC): the Number of Constituent Quark Scaling (NCQ), the large radial and elliptic flow, the effect of gluon saturation and the suppression of hadron production at high transverse momentum (pT) due to jet quenching. In this formalism, the NCQ scaling at RHIC appears as a consequence of non-equilibrium process. Our study also provides concise reference distributions with a least chi2 fit of the available experimental data for future experiments and models.Comment: 4 pages, 3 figures; added two tables, explained a little bit more on TBW_p

    Security of Binary Modulated Continuous Variable Quantum Key Distribution under Collective Attacks

    Full text link
    We give an achievable secret key rate of a binary modulated continuous variable quantum key distribution schemes in the collective attack scenario considering quantum channels that impose arbitrary noise on the exchanged signals. Bob performs homodyne measurements on the received states and the two honest parties employ a reverse reconciliation procedure in the classical post-processing step of the protocol.Comment: 16 pages, 2 figure

    Schr\"odinger equation of general potential

    Full text link
    It is well known that the Schr\"odinger equation is only suitable for the particle in common potential V(r,t)V(\vec{r},t). In this paper, a general Quantum Mechanics is proposed, where the Lagrangian is the general form. The new quantum wave equation can describe the particle which is in general potential V(r,r˙,t)V(\vec{r}, \dot{\vec{r}}, t). We think these new quantum wave equations can be applied in many fields.Comment: 10 pages, 0 figures, accepted for publication in International Journal of Modern Physics B. arXiv admin note: substantial text overlap with arXiv:0909.2995; and text overlap with arXiv:0711.3544 by other authors without attributio

    Developments of a 2D Position Sensitive Neutron Detector

    Full text link
    Chinese Spallation Neutron Source (CSNS), one project of the 12th five-year-plan scheme of China, is under construction in Guangdong province. Three neutron spectrometers will be installed at the first phase of the project, where two-dimensional position sensitive thermal neutron detectors are required. Before the construction of the neutron detector, a prototype of two-dimensional 200 mmx200 mm Multi-wire Proportional Chamber (MWPC) with the flowing gas of Ar/CO2 (90/10) has been constructed and tested with the 55Fe X-Ray using part of the electronics in 2009, which showed a good performance. Following the test in 2009, the neutron detector has been constructed with the complete electronics and filled with the 6atm.3He + 2.5atm.C3H8 gas mixture in 2010. The neutron detector has been primarily tested with an Am/Be source. In this paper, some new developments of the neutron detector including the design of the high pressure chamber, the optimization of the gas purifying system and the gas filling process will be reported. The results and discussion are also presented in this paper.Comment: 5 page

    MerTK is required for apoptotic cell–induced T cell tolerance

    Get PDF
    Self-antigens expressed by apoptotic cells (ACs) may become targets for autoimmunity. Tolerance to these antigens is partly established by an ill-defined capacity of ACs to inhibit antigen-presenting cells such as dendritic cells (DCs). We present evidence that the receptor tyrosine kinase Mer (MerTK) has a key role in mediating AC-induced inhibition of DC activation/maturation. Pretreatment of DCs prepared from nonobese diabetic (NOD) mice with AC blocked secretion of proinflammatory cytokines, up-regulation of costimulatory molecule expression, and T cell activation. The effect of ACs on DCs was dependent on Gas6, which is a MerTK ligand. NOD DCs lacking MerTK expression (NOD.MerTKKD/KD) were resistant to AC-induced inhibition. Notably, autoimmune diabetes was exacerbated in NOD.MerTKKD/KD versus NOD mice expressing the transgenic BDC T cell receptor. In addition, β cell–specific CD4+ T cells adoptively transferred into NOD.MerTKKD/KD mice in which β cell apoptosis was induced with streptozotocin exhibited increased expansion and differentiation into type 1 T cell effectors. In both models, the lack of MerTK expression was associated with an increased frequency of activated pancreatic CD11c+CD8α+ DCs, which exhibited an enhanced T cell stimulatory capacity. These findings demonstrate that MerTK plays a critical role in regulating self-tolerance mediated between ACs, DCs, and T cells
    corecore