4 research outputs found

    The Grand-Canonical Asymmetric Exclusion Process and the One-Transit Walk

    Get PDF
    The one-dimensional Asymmetric Exclusion Process (ASEP) is a paradigm for nonequilibrium dynamics, in particular driven diffusive processes. It is usually considered in a canonical ensemble in which the number of sites is fixed. We observe that the grand-canonical partition function for the ASEP is remarkably simple. It allows a simple direct derivation of the asymptotics of the canonical normalization in various phases and of the correspondence with One-Transit Walks recently observed by Brak et.al.Comment: Published versio

    Continued Fractions and the Partially Asymmetric Exclusion Process

    Full text link
    We note that a tridiagonal matrix representation of the algebra of the partially asymmetric exclusion process (PASEP) lends itself to interpretation as the transfer matrix for weighted Motzkin lattice paths. A continued fraction ("J-Fraction") representation of the lattice path generating function is particularly well suited to discussing the PASEP, for which the paths have height dependent weights. We show that this not only allows a succinct derivation of the normalisation and correlation lengths of the PASEP, but also reveals how finite-dimensional representations of the PASEP algebra, valid only along special lines in the phase diagram, relate to the general solution that requires an infinite-dimensional representation

    Dyck Paths, Motzkin Paths and Traffic Jams

    Get PDF
    It has recently been observed that the normalization of a one-dimensional out-of-equilibrium model, the Asymmetric Exclusion Process (ASEP) with random sequential dynamics, is exactly equivalent to the partition function of a two-dimensional lattice path model of one-transit walks, or equivalently Dyck paths. This explains the applicability of the Lee-Yang theory of partition function zeros to the ASEP normalization. In this paper we consider the exact solution of the parallel-update ASEP, a special case of the Nagel-Schreckenberg model for traffic flow, in which the ASEP phase transitions can be intepreted as jamming transitions, and find that Lee-Yang theory still applies. We show that the parallel-update ASEP normalization can be expressed as one of several equivalent two-dimensional lattice path problems involving weighted Dyck or Motzkin paths. We introduce the notion of thermodynamic equivalence for such paths and show that the robustness of the general form of the ASEP phase diagram under various update dynamics is a consequence of this thermodynamic equivalence.Comment: Version accepted for publicatio

    Chebyshev type lattice path weight polynomials by a constant term method

    Full text link
    We prove a constant term theorem which is useful for finding weight polynomials for Ballot/Motzkin paths in a strip with a fixed number of arbitrary `decorated' weights as well as an arbitrary `background' weight. Our CT theorem, like Viennot's lattice path theorem from which it is derived primarily by a change of variable lemma, is expressed in terms of orthogonal polynomials which in our applications of interest often turn out to be non-classical. Hence we also present an efficient method for finding explicit closed form polynomial expressions for these non-classical orthogonal polynomials. Our method for finding the closed form polynomial expressions relies on simple combinatorial manipulations of Viennot's diagrammatic representation for orthogonal polynomials. In the course of the paper we also provide a new proof of Viennot's original orthogonal polynomial lattice path theorem. The new proof is of interest because it uses diagonalization of the transfer matrix, but gets around difficulties that have arisen in past attempts to use this approach. In particular we show how to sum over a set of implicitly defined zeros of a given orthogonal polynomial, either by using properties of residues or by using partial fractions. We conclude by applying the method to two lattice path problems important in the study of polymer physics as models of steric stabilization and sensitized flocculation.Comment: 27 pages, 14 figure
    corecore