37 research outputs found

    Spatial and temporal variation of anthropogenic heat emissions in Colombo, Sri Lanka

    Get PDF
    Anthropogenic heat emissions (AHEs) should be accounted for when making city, neighbourhood, and building scale decisions about building design, health preparedness (e.g. heat stress), and achieving net zero carbon. Therefore, datasets with spatial and temporal variations are required for the range of global cities, including lower-middle income, low-latitude cities. Here we estimate the 2020 AHEs at 100 m resolution for Colombo, Sri Lanka. The city-wide annual mean is 5.9 W m−2. Seasonal variations are very small linked to small temperature differences, unlike mid- and high-latitude cities. However, the diurnal range of 17.6 to 1.8 W m−2 has three distinct peaks (cf. two often found in mid-latitude cities). Transport, metabolic and building related emissions account for 35, 33, and 32% of the total emissions, respectively. Building emissions are proportionally small (cf. mid-latitudes), as there is neither need for space heating nor frequent use of air conditioning, and little heavy industry. The AHE spatial heterogeneity is large, with annual-average maxima of 124 W m−2 at hectometre scale, but dropping rapidly to 10 W m−2 at kilometre scale. City-wide projections of AHEs from 2020 to 2035 range between 24 and 61% increase

    In vivo biocompatibility and pacing function study of silver ion-based antimicrobial surface technology applied to cardiac pacemakers

    Get PDF
    INTRODUCTION Evidence suggests that the rate of cardiovascular implantable electronic device (CIED) infections is increasing more rapidly than the rates of CIED implantation and is associated with considerable mortality, morbidity and health economic impact. Antimicrobial surface treatments are being developed for CIEDs to reduce the risk of postimplantation infection within the subcutaneous implant pocket. METHODS AND ANALYSIS The feasibility of processing cardiac pacemakers with the Agluna antimicrobial silver ion surface technology and in vivo biocompatibility were evaluated. Antimicrobially processed (n=6) and control pacemakers (n=6) were implanted into subcutaneous pockets and connected to a part of the muscle using an ovine model for 12 weeks. Pacemaker function was monitored preimplantation and postimplantation. RESULTS Neither local infection nor systemic toxicity were detected in antimicrobial or control devices, and surrounding tissues showed no abnormal pathology or over-reactivity. Semiquantitative scores of membrane formation, cellular orientation and vascularity were applied over five regions of the pacemaker capsule and average scores compared. Results showed no significant difference between antimicrobially processed and control pacemakers. Silver analysis of whole blood at 7 days found that levels were a maximum of 10 parts per billion (ppb) for one sample, more typically ≤2 ppb, compared with <2 ppb for preimplantation levels, well below reported toxic levels. CONCLUSIONS There was no evidence of adverse or abnormal pathology in tissue surrounding antimicrobially processed pacemakers, or deleterious effect on basic pacing capabilities and parameters at 12 weeks. This proof of concept study provides evidence of basic biocompatibility and feasibility of applying this silver ion-based antimicrobial surface to a titanium pacemaker surface

    Association between rheumatoid arthritis disease activity, progression of functional limitation and long-term risk of orthopaedic surgery : Combined analysis of two prospective cohorts supports EULAR treat to target DAS thresholds

    Get PDF
    Objectives: To examine the association between disease activity in early rheumatoid arthritis (RA), functional limitation and long-term orthopaedic episodes. Methods: Health Assessment Questionnaire (HAQ) disability scores were collected from two longitudinal early RA inception cohorts in routine care; Early Rheumatoid Arthritis Study and Early Rheumatoid Arthritis Network from 1986 to 2012. The incidence of major and intermediate orthopaedic surgical episodes over 25 years was collected from national data sets. Disease activity was categorised by mean disease activity score (DAS28) annually between years 1 and 5; remission (RDAS≤2.6), low (LDAS>2.6-3.2), low-moderate (LMDAS≥3.2-4.19), high-moderate (HMDAS 4.2-5.1) and high (HDAS>5.1). Results: Data from 2045 patients were analysed. Patients in RDAS showed no HAQ progression over 5 years, whereas there was a significant relationship between rising DAS28 category and HAQ at 1 year, and the rate of HAQ progression between years 1 and 5. During 27 986 person-years follow-up, 392 intermediate and 591 major surgeries were observed. Compared with the RDAS category, there was a significantly increased cumulative incidence of intermediate surgery in HDAS (OR 2.59 CI 1.49 to 4.52) and HMDAS (OR 1.8 CI 1.05 to 3.11) categories, and for major surgery in HDAS (OR 2.48 CI 1.5 to 4.11), HMDAS (OR 2.16 CI 1.32 to 3.52) and LMDAS (OR 2.07 CI 1.28 to 3.33) categories. There was no significant difference in HAQ progression or orthopaedic episodes between RDAS and LDAS categories. Conclusions: There is an association between disease activity and both poor function and long-term orthopaedic episodes. This illustrates the far from benign consequences of persistent moderate disease activity, and supports European League Against Rheumatism treat to target recommendations to secure low disease activity or remission in all patients.Peer reviewedFinal Published versio

    Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records

    Get PDF
    The Northwest European shelf experienced unprecedented surface temperature anomalies in June 2023 (anomalies up to 5 °C locally, north of Ireland). Here, we show the shelf average underwent its longest recorded category II marine heatwave (16 days). With state-of-the-art observation and modelling capabilities, we show the marine heatwave developed quickly due to strong atmospheric forcing (high level of sunshine, weak winds, tropical air) and weak wave activity under anticyclonic weather regimes. Once formed, this shallow marine heatwave fed back on the weather: over the sea it reduced cloud cover and over land it contributed to breaking June mean temperature records and to enhanced convective rainfall through stronger, warmer and moister sea breezes. This marine heatwave was intensified by the last 20-year warming trend in sea surface temperatures. Such sea surface temperatures are projected to become commonplace by the middle of the century under a high greenhouse gas emission scenario

    Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records

    Get PDF
    The Northwest European shelf experienced unprecedented surface temperature anomalies in June 2023 (anomalies up to 5 °C locally, north of Ireland). Here, we show the shelf average underwent its longest recorded category II marine heatwave (16 days). With state-of-the-art observation and modelling capabilities, we show the marine heatwave developed quickly due to strong atmospheric forcing (high level of sunshine, weak winds, tropical air) and weak wave activity under anticyclonic weather regimes. Once formed, this shallow marine heatwave fed back on the weather: over the sea it reduced cloud cover and over land it contributed to breaking June mean temperature records and to enhanced convective rainfall through stronger, warmer and moister sea breezes. This marine heatwave was intensified by the last 20-year warming trend in sea surface temperatures. Such sea surface temperatures are projected to become commonplace by the middle of the century under a high greenhouse gas emission scenario
    corecore