17 research outputs found

    The effect of bone growth onto massive prostheses collars in protecting the implant from fracture

    Get PDF
    Limb-sparing distal femoral endoprotheses used in cancer patients have a high risk of aseptic loosening. It had been reported that young adolescent patients have a higher rate of loosening and fatigue fracture of intramedullary stems because the implant becomes undersized as patients grow. Extracortical bone growth into the grooved hydroxyapatite-coated collar had been shown to reduce failure rates. The stresses in the implant and femur have been calculated from Finite Element models for different stages of bone growth onto the collar. For a small diameter stem without any bone growth, a large stress concentration at the implant shoulder was found, leading to a significant fracture risk under normal walking loads. Bone growth and osseointergration onto the implant collar reduced the stress level in the implant to safe levels. For small bone bridges a risk of bone fracture was observed

    Centre of rotation of the human subtalar joint using weight-bearing clinical computed tomography

    Get PDF
    Accurate in vivo quantification of subtalar joint kinematics can provide important information for the clinical evaluation of subtalar joint function; the analysis of outcome of surgical procedures of the hindfoot; and the design of a replacement subtalar joint prosthesis. The objective of the current study was to explore the potential of full weight-bearing clinical computed tomography (CT) to evaluate the helical axis and centre of rotation of the subtalar joint during inversion and eversion motion. A subject specific methodology was proposed for the definition of the subtalar joint motion combining three-dimensional (3D) weight-bearing imaging at different joint positions with digital volume correlation (DVC). The computed subtalar joint helical axis parameters showed consistency across all healthy subjects and in line with previous data under simulated loads. A sphere fitting approach was introduced for the computation of subtalar joint centre of rotation, which allows to demonstrate that this centre of rotation is located in the middle facet of the subtalar joint. Some translation along the helical axis was also observed, reflecting the elasticity of the soft-tissue restraints. This study showed a novel technique for non-invasive quantitative analysis of bone-to-bone motion under full weight-bearing of the hindfoot. Identifying different joint kinematics in patients with ligamentous laxity and instability, or in the presence of stiffness and arthritis, could help clinicians to define optimal patient-specific treatments

    Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects

    Get PDF
    Magnesium (Mg) and its alloys are very promising degradable, osteoconductive and osteopromotive materials to be used as regenerative treatment for critical-sized bone defects. Under load-bearing conditions, Mg alloys must display sufficient morphological and mechanical resemblance to the native bone they are meant to replace to provide adequate support and enable initial bone bridging. In this study, unique highly open-porous Mg-based scaffolds were mechanically and morphologically characterised at different scales. In situ X-ray computed tomography (XCT) mechanics, digital volume correlation (DVC), electron microscopy and nanoindentation were combined to assess the influence of material properties on the apparent (macro) mechanics of the scaffold. The results showed that Mg exhibited a higher connected structure (38.4mm−3 and 6.2mm−3 for Mg and trabecular bone (Tb), respectively) and smaller spacing (245µm and 629µm for Mg and Tb, respectively) while keeping an overall appropriate porosity of 55% in the range of trabecular bone (30-80%). This fully connected and highly porous structure promoted lower local strain compared to the trabecular bone structure at material level (i.e. -22067 ± 8409µε and -40120 ± 18364µε at 6% compression for Mg and trabecular bone, respectively) and highly ductile mechanical behaviour at apparent level preventing premature scaffold failure. Furthermore, the Mg scaffolds exceeded the physiological strain of bone tissue generated in daily activities such as walking or running (500-2000µε) by one order of magnitude. The yield stress was also found to be close to trabecular bone (2.06MPa and 6.67MPa for Mg and Tb, respectively). Based on this evidence, the study highlights the overall biomechanical suitability of an innovative Mg-based scaffold design to be used as a treatment for bone critical-sized defects

    sj-docx-2-pih-10.1177_09544119241231890 – Supplemental material for A scoring system to evaluate stability of percutaneous osseointegrated implants for transfemoral amputation with validation in the ITAP clinical trial

    No full text
    Supplemental material, sj-docx-2-pih-10.1177_09544119241231890 for A scoring system to evaluate stability of percutaneous osseointegrated implants for transfemoral amputation with validation in the ITAP clinical trial by Kirstin Ahmed and Gordon William Blunn in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</p

    sj-tif-1-pih-10.1177_09544119241231890 – Supplemental material for A scoring system to evaluate stability of percutaneous osseointegrated implants for transfemoral amputation with validation in the ITAP clinical trial

    No full text
    Supplemental material, sj-tif-1-pih-10.1177_09544119241231890 for A scoring system to evaluate stability of percutaneous osseointegrated implants for transfemoral amputation with validation in the ITAP clinical trial by Kirstin Ahmed and Gordon William Blunn in Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</p
    corecore