93 research outputs found

    Integrated human/SARS-CoV-2 metabolic models present novel treatment strategies against COVID-19

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus'' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli. © 2021 Bannerman et al

    Functional and structural characterisation of RimL from Bacillus cereus, a new Nα-acetyltransferase of ribosomal proteins that was wrongly assigned as an aminoglycosyltransferase

    Get PDF
    Enzymes of the GNAT (GCN5-relate N-acetyltransferases) superfamily are important regulators of cell growth and development. They are functionally diverse and share low amino acid sequence identity, making functional annotation difficult. In this study, we report the function and structure of a new ribosomal enzyme, Nα-acetyl transferase from Bacillus cereus (RimLBC), a protein that was previously wrongly annotated as an aminoglycosyltransferase. Firstly, extensive comparative amino acid sequence analyses suggested RimLBC belongs to a cluster of proteins mediating acetylation of the ribosomal protein L7/L12. To assess if this was the case, several well established substrates of aminoglycosyltransferases were screened. The results of these studies did not support an aminoglycoside acetylating function for RimLBC. To gain further insight into RimLBC biological role, a series of studies that included MALDI-TOF, isothermal titration calorimetry, NMR, X-ray protein crystallography, and site-directed mutagenesis confirmed RimLBC affinity for Acetyl-CoA and that the ribosomal protein L7/L12 is a substrate of RimLBC. Last, we advance a mechanistic model of RimLBC mode of recognition of its protein substrates. Taken together, our studies confirmed RimLBC as a new ribosomal Nα-acetyltransferase and provide structural and functional insights into substrate recognition by Nα-acetyltransferases and protein acetylation in bacteria

    Adaptation of plasminogen activator sequences to known protease structures

    Get PDF
    AbstractThe sequences of urokinase (UK) and tissue-type plasminogen activator (TPA) were aligned with those of chymotrypsin, trypsin, and elastase according to their ‘structurally conserved regions’. In spite of its trypsin-like specificity UK was model-built on the basis of the chymotrypsin structure because of a corresponding disulfide pattern. The extra disulfide bond falls to cysteines 50 and 111d. Insertions can easily be accommodated at the surface. As they occur similarly in both, UK and TPA, a role in plasminogen recognition may be possible. Of the functional positions known to be involved in substrate or inhibitor binding, Asp 97, Lys 143 and Arg 217 (Leu in TPA) may contribute to plasminogen activating specificity. PTI binding may in part be impaired by structural differences at the edge of the binding pocket

    First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way

    Get PDF
    Galaxie

    Satisfaction of hydrogen-bonding potential influences the conservation of polar sidechains

    No full text
    Although polar amino acids tend to be found on the surface of proteins due to their hydrophilic nature, their important roles within the core of proteins are now becoming better recognized. It has long been understood that a significant number of mainchain functions will not achieve hydrogen bond satisfaction through the formation of secondary structures; in these circumstances, it is generally buried polar residues that provide hydrogen bond satisfaction. Here, we describe an analysis of the hydrogen-bonding of polar amino acids in a set of structurally aligned protein families. This allows us not only to calculate the conservation of each polar residue but also to assess whether conservation is correlated with the hydrogen-bonding potential of polar sidechains. We show that those polar sidechains whose hydrogen-bonding potential is satisfied tend to be more conserved than their unsatisfied or nonhydrogen-bonded counterparts, particularly when buried. Interestingly, these buried and satisfied polar residues are significantly more conserved than buried hydrophobic residues. Forming hydrogen bonds to mainchain amide atoms also influences conservation, with those satisfied buried polar residues that form two hydrogen bonds to mainchain amides being significantly more conserved than those that form only one or none. These results indicate that buried polar residues whose hydrogen-bonding potential is satisfied are likely to have important roles in maintaining protein structure

    Structural and functional constraints in the evolution of protein families

    No full text
    High-throughput genomic sequencing has focused attention on understanding differences between species and between individuals. When this genetic variation affects protein sequences, the rate of amino acid substitution reflects both Darwinian selection for functionally advantageous mutations and selectively neutral evolution operating within the constraints of structure and function. During neutral evolution, whereby mutations accumulate by random drift, amino acid substitutions are constrained by factors such as the formation of intramolecular and intermolecular interactions and the accessibility to water or lipids surrounding the protein. These constraints arise from the need to conserve a specific architecture and to retain interactions that mediate functions in protein families and superfamilies
    corecore