30 research outputs found

    NO-dependent blood pressure regulation in RGS2-deficient mice

    No full text
    The regulator of G protein signaling (RGS) 2, a GTPase-activating protein, is activated via the nitric oxide (NO)-cGMP pathway and thereby may influence blood pressure regulation. To test that notion, we measured mean arterial blood pressure (MAP) and heart rate (HR) with telemetry in N(omega)-nitro-l-arginine methyl ester (l-NAME, 5 mg l-NAME/10 ml tap water)-treated RGS2-deficient (RGS2(-/-)) and RGS2-sufficient (RGS2(+/+)) mice and assessed autonomic function. Without l-NAME, RGS2(-/-) mice showed during day and night a similar increase of MAP compared with controls. l-NAME treatment increased MAP in both strains. nNOS is involved in this l-NAME-dependent blood pressure increase, since 7-nitroindazole increased MAP by 8 and 9 mmHg (P < 0.05) in both strains. The l-NAME-induced MAP increase of 14-15 mmHg during night was similar in both strains. However, the l-NAME-induced MAP increase during the day was smaller in RGS2(-/-) than in RGS2(+/+) (11 +/- 1 vs. 17 +/- 2 mmHg; P < 0.05). Urinary norepinephrine and epinephrine excretion was higher in RGS2(-/-) than in RGS2(+/+) mice. The MAP decrease after prazosin was more pronounced in l-NAME-RGS2(-/-). HR variability parameters [root mean square of successive differences (RMSSD), low-frequency (LF) power, and high-frequency (HF) power] and baroreflex sensitivity were increased in RGS2(-/-). Atropine and atropine plus metoprolol markedly reduced RMSSD, LF, and HF. Our data suggest an interaction between RGS2 and the NO-cGMP pathway. The blunted l-NAME response in RGS2(-/-) during the day suggests impaired NO signaling. The MAP increases during the active phase in RGS2(-/-) mice may be related to central sympathetic activation and increased vascular adrenergic responsiveness

    Autonomic nervous system and blood pressure regulation in RGS2-deficient mice

    No full text
    Regulator of G protein signaling (RGS2) deletion in mice prolongs signaling by G protein-coupled vasoconstrictor receptors and increases blood pressure. However, the exact mechanism of the increase in blood pressure is unknown. To address this question we tested autonomic nervous system function and blood pressure regulation in RGS2-deficient mice (RGS2 -/-). We measured arterial blood pressure and heart rate (HR) with telemetry, computed time and frequency-domain measures for blood pressure and HR variability (HRV) as well as baroreflex sensitivity [BRS-low frequency (LF)], and assessed environmental stress sensitivity. Mean arterial blood pressure (MAP) was ≃10 mmHg higher in RGS2 -/- compared with RGS2 +/+ mice, while HR was not different between the groups, indicating a resetting of the baroreceptor reflex. Atropine increased MAP more in RGS2 -/- than in RGS2 +/+ mice while HR responses were not different. Urinary norepinephrine excretion was higher in RGS2 -/- than in RGS2 +/+ mice. The blood pressure decrease following prazosin was more pronounced in RGS2 -/- mice than in RGS2 +/+ mice. The LF and high-frequency (HF) power of HRV were reduced in RGS2 -/- compared with controls while BRS-LF and SBP-LF were not different. Atropine and atropine + metoprolol markedly reduced the HRV parameters in the time (RMSSD) and frequency domain (LF, HF, LF/HF) in both strains. Environmental stress sensitivity was increased in RGS2 -/- mice compared with controls. We conclude that the increase in blood pressure in RGS2 -/- mice is not solely explained by peripheral vascular mechanisms. A central nervous system mechanism might be implicated by an increased sympathetic tone. This state of affairs could lead to a baroreceptor-HR reflex resetting, while BRS remains unimpaired

    G.H. Mead: theorist of the social act

    Get PDF
    There have been many readings of Mead's work, and this paper proposes yet another: Mead, theorist of the social act. It is argued that Mead's core theory of the social act has been neglected, and that without this theory, the concept of taking the attitude of the other is inexplicable and the contemporary relevance of the concept of the significant symbol is obfuscated. The paper traces the development of the social act out of Dewey's theory of the act. According to Mead, Dewey's theory does not sufficiently account for consciousness. Grappling with this problematic leads Mead to several key ideas, which culminate in his theory of the social act. The social act and taking the attitude of the other are then illustrated by the analysis of a game of football. The interpretation presented has two novel aspects: first, symbolisation arises not simply through self taking the attitude of the other, but through the pairing of this attitude with the complementary attitude in self; second, self is able to take the attitude of the other to the extent that self has in actuality or in imagination previously been in the social position of the other. From this standpoint the key issue is how the attitude of self and other become integrated. New directions for empirical research, aimed at advancing this question are outlined. Finally, the paper shows how the social act can contribute to our contemporary concerns about the nature of the symbolic

    Sympathetic nerve traffic and circulating norepinephrine levels in RGS2-deficient mice

    No full text
    Regulator of G protein signaling 2 (RGS2-/-) deficient mice feature an increased resting blood pressure and an excessive pressor response to stress. We measured renal sympathetic nerve activity (RSNA) directly to test the hypothesis that RSNA is increased in RGS2-/- mice, compared to RGS2+/+ mice. Seventeen mice (RGS2-/-, n=9; RGS2+/+, n=8) were anesthetized with isoflurane. We cannulated the left jugular vein for drug administration. Renal sympathetic nerve activity (RSNA) was recorded using bipolar electrodes. Arterial blood pressure (BP) from the femoral artery, ECG (needle electrodes), and RSNA were recorded (sample rate 10 kHz) simultaneously. RSNA was analysed off-line using a modified wavelet de-noising technique and the classical discriminator method. RSNA detected during phenylephrine bolus injections or after the animals death was subtracted from baseline values. Mean arterial blood pressure, norepinephrine plasma levels, the responsiveness to vasoactive drugs, and the sympathetic baroreflex gain were similar in anesthetized RGS2+/+ and RGS2-/- animals. RSNA was lower in RGS2-/- mice compared to wild-type controls (wavelet: spike rate in Hz: RGS2+/+ 25.5+/-5.1; RGS2-/- 17.4+/-4.0; discriminator method: RGS2+/+ 41.4+/-5.7, RGS2-/- 22.0+/-4.3, p&lt;0.05). Thus, the expected result proved not to be the case. Our data suggest a mismatch between sympathetic nerve traffic and plasma norepinephrine concentrations. This observation may depend on altered coupling between electrical nerve activity and norepinephrine release and/or a changed norepinephrine uptake in RGS2-/- mice
    corecore