36 research outputs found
Wallerian-like axonal degeneration in the optic nerve after excitotoxic retinal insult: an ultrastructural study
BACKGROUND: Excitotoxicity is involved in the pathogenesis of a number neurodegenerative diseases, and axonopathy is an early feature in several of these disorders. In models of excitotoxicity-associated neurological disease, an excitotoxin delivered to the central nervous system (CNS), could trigger neuronal death not only in the somatodendritic region, but also in the axonal region, via oligodendrocyte N-methyl-D-aspartate (NMDA) receptors. The retina and optic nerve, as approachable regions of the brain, provide a unique anatomical substrate to investigate the “downstream” effect of isolated excitotoxic perikaryal injury on central nervous system (CNS) axons, potentially providing information about the pathogenesis of the axonopathy in clinical neurological disorders. Herein, we provide ultrastructural information about the retinal ganglion cell (RGC) somata and their axons, both unmyelinated and myelinated, after NMDA-induced retinal injury. Male Sprague-Dawley rats were killed at 0 h, 24 h, 72 h and 7 days after injecting 20 nM NMDA into the vitreous chamber of the left eye (n = 8 in each group). Saline-injected right eyes served as controls. After perfusion fixation, dissection, resin-embedding and staining, ultrathin sections of eyes and proximal (intraorbital) and distal (intracranial) optic nerve segments were evaluated by transmission electron tomography (TEM). RESULTS: TEM demonstrated features of necrosis in RGCs: mitochondrial and endoplasmic reticulum swelling, disintegration of polyribosomes, rupture of membranous organelle and formation of myelin bodies. Ultrastructural damage in the optic nerve mimicked the changes of Wallerian degeneration; early nodal/paranodal disturbances were followed by the appearance of three major morphological variants: dark degeneration, watery degeneration and demyelination. CONCLUSION: NMDA-induced excitotoxic retinal injury causes mainly necrotic RGC somal death with Wallerian-like degeneration of the optic nerve. Since axonal degeneration associated with perikaryal excitotoxic injury is an active, regulated process, it may be amenable to therapeutic intervention.Sarabjit K. Saggu, Hiren P. Chotaliya, Peter C. Blumbergs and Robert J. Casso
A surgical model of permanent and transient middle cerebral artery stroke in the sheep
BACKGROUND: Animal models are essential to study the pathophysiological changes associated with focal occlusive stroke and to investigate novel therapies. Currently used rodent models have yielded little clinical success, however large animal models may provide a more suitable alternative to improve clinical translation. We sought to develop a model of acute proximal middle cerebral artery (MCA) ischemic stroke in sheep, including both permanent occlusion and transient occlusion with reperfusion. MATERIALS AND METHODS: 18 adult male and female Merino sheep were randomly allocated to one of three groups (n = 6/gp): 1) sham surgery; 2) permanent proximal MCA occlusion (MCAO); or 3) temporary MCAO with aneurysm clip. All animals had invasive arterial blood pressure, intracranial pressure and brain tissue oxygen monitoring. At 4 h following vessel occlusion or sham surgery animals were killed by perfusion fixation. Brains were processed for histopathological examination and infarct area determination. 6 further animals were randomized to either permanent (n = 3) or temporary MCAO (n = 3) and then had magnetic resonance imaging (MRI) at 4 h after MCAO. RESULTS: Evidence of ischemic injury in an MCA distribution was seen in all stroke animals. The ischemic lesion area was significantly larger after permanent (28.8%) compared with temporary MCAO (14.6%). Sham animals demonstrated no evidence of ischemic injury. There was a significant reduction in brain tissue oxygen partial pressure after permanent vessel occlusion between 30 and 210 mins after MCAO. MRI at 4 h demonstrated complete proximal MCA occlusion in the permanent MCAO animals with a diffusion deficit involving the whole right MCA territory, whereas temporary MCAO animals demonstrated MRA evidence of flow within the right MCA and smaller predominantly cortical diffusion deficits. CONCLUSIONS: Proximal MCAO can be achieved in an ovine model of stroke via a surgical approach. Permanent occlusion creates larger infarct volumes, however aneurysm clip application allows for reperfusion.Adam J. Wells, Robert Vink, Peter C. Blumbergs, Brian P. Brophy, Stephen C. Helps, Steven J. Knox and Renée J. Turne
Peroxiredoxin 6 in human brain: molecular forms, cellular distribution and association with Alzheimer’s disease pathology
Peroxiredoxin 6 is an antioxidant enzyme and is the 1-cys member of the peroxiredoxin family. Using two-dimensional electrophoresis and Western blotting, we have shown for the first time that, in human control and brain tissue of patient’s with Alzheimer’s disease (AD), this enzyme exists as three major and five minor forms with pIs from 5.3 to 6.1. Using specific cellular markers, we have shown that peroxiredoxin 6 is present in astrocytes with very low levels in neurons, but not detectable in microglia or oligodendrocytes. In control brains, there was a very low level of peroxiredoxin 6 staining in astrocytes that was confined to a “halo” around the nucleus. In AD, there were marked increases in the number and staining intensity of peroxiredoxin 6 positive astrocytes in both gray and white matter in the midfrontal cortex, cingulate, hippocampus and amygdala. Confocal microscopy using antibodies to Aβ peptide, tau and peroxiredoxin 6 showed that peroxiredoxin 6 positive astrocytes are closely involved with diffuse plaques and to a lesser extent with neuritic plaques, suggesting that plaques are producing reactive oxygen species. There appeared to be little astrocytic response to tau containing neurons. Although peroxiredoxin 6 positive astrocytes were seen to make multiple contacts with tau positive neurons, there was no intraneuronal colocalization. In brain tissue of patients with AD, many blood vessels exhibited peroxiredoxin 6 staining that appeared to be due to the astrocytic foot processes. These results suggest that oxidative stress conditions exist in AD and that peroxiredoxin 6 is an important antioxidant enzyme in human brain defenses
Elevated intracranial pressure and cerebral edema following permanent MCA occlusion in an ovine model
INTRODUCTION: Malignant middle cerebral artery (MCA) stroke has a disproportionately high mortality due to the rapid development of refractory space-occupying cerebral edema. Animal models are essential in developing successful anti-edema therapies; however to date poor clinical translation has been associated with the predominately used rodent models. As such, large animal gyrencephalic models of stroke are urgently needed. The aim of the study was to characterize the intracranial pressure (ICP) response to MCA occlusion in our recently developed ovine stroke model. MATERIALS AND METHODS: 30 adult female Merino sheep (n = 8-12/gp) were randomized to sham surgery, temporary or permanent proximal MCA occlusion. ICP and brain tissue oxygen were monitored for 24 hours under general anesthesia. MRI, infarct volume with triphenyltetrazolium chloride (TTC) staining and histology were performed. RESULTS: No increase in ICP, radiological evidence of ischemia within the MCA territory but without space-occupying edema, and TTC infarct volumes of 7.9+/-5.1% were seen with temporary MCAO. Permanent MCAO resulted in significantly elevated ICP, accompanied by 30% mortality, radiological evidence of space-occupying cerebral edema and TTC infarct volumes of 27.4+/-6.4%. CONCLUSIONS: Permanent proximal MCAO in the sheep results in space-occupying cerebral edema, raised ICP and mortality similar to human malignant MCA stroke. This animal model may prove useful for pre-clinical testing of anti-edema therapies that have shown promise in rodent studies.Adam J. Wells, Robert Vink, Stephen C. Helps, Steven J. Knox, Peter C. Blumbergs, Renée J. Turne
Nonselenium Glutathione Peroxidase in Human Brain : Elevated Levels in Parkinson’s Disease and Dementia with Lewy Bodies
Nonselenium glutathione peroxidase (NSGP) is a new member of the antioxidant family. Using antibodies to recombinant NSGP we have examined the distribution of this enzyme in normal, Parkinson’s disease (PD), and dementia with Lewy body disease (DLB) brains. We have also co-localized this enzyme with α-synuclein as a marker for Lewy bodies. In normal brains there was a very low level of NSGP staining in astrocytes. In PD and DLB there were increases in the number and staining intensity of NSGP-positive astrocytes in both gray and white matter. Cell counting of NSGP cells in PD and DLB frontal and cingulated cortices indicated there was 10 to 15 times more positive cells in gray matter and three times more positive cells in white matter than in control cortices. Some neurons were positive for both α-synuclein and NSGP in PD and DLB, and double staining indicated that NSGP neurons contained either diffuse cytoplasmic α-synuclein deposits or Lewy bodies. In concentric Lewy bodies, α-synuclein staining was peripheral whereas NSGP staining was confined to the central core. Immunoprecipitation indicated there was direct interaction between α-synuclein and NSGP. These results suggest oxidative stress conditions exist in PD and DLB and that certain cells have responded by up-regulating this novel antioxidant enzyme
Histopathology for H&E.
<p>The infarct was evident as a region of tissue pallor, charcterised by extensive cell injury/death and tissue vacuolation (A). The was selective cell sparing and cell injury/loss within the penumbral tissue (B). n = 8 shams, n = 12 transient MCAO, n = 10 permanent MCAO.</p
TTC at 24 hours, coronal stack.
<p>Unstained brain tissue represents cerebral ischemia. There is no evidence of ischemia in sham animals in the left column (A), small cortical ischemia in temporary MCAO animals in the center column (B), and large MCA territory ischemia in permanent MCAO animals in the right column (C). MCA, middle cerebral artery; MCAO, middle cerebral artery occlusion; TTC, 2,3,5-triphenyltetrazolium chloride, n = 5 shams, n = 11 transient MCAO, n = 8 permanent MCAO.</p
Histopathology, coronal section.
<p>Section level with the origin of the MCA. H&E for sham surgery (A), temporary MCAO (B) and permanent MCAO (C). Albumin immunostaining for sham (D), temporary MCAO (E) and permanent MCAO (F). Weil stain for sham (G), temporary MCAO (H) and permanent MCAO (I). MCA, middle cerebral artery; MCAO, middle cerebral artery occlusion, n = 8 shams, n = 12 transient MCAO, n = 10 permanent MCAO.</p
Mean 24 hour ICP and PbtO<sub>2</sub> following MCAO.
<p>Mean ICP following sham surgery, temporary MCAO or permanent MCAO (A). Mean ICP following permanent MCAO, animals that died within the 24-hour monitoring period versus animals that survived (B). Mean PbtO<sub>2</sub> following temporary and permanent MCAO or sham surgery (C). ICP, intracranial pressure; MCAO, middle cerebral artery occlusion; PbtO<sub>2</sub>, partial pressure of brain tissue oxygen, n = 8–12/gp.</p