6 research outputs found

    Toward a methodical framework for comprehensively assessing forest multifunctionality

    Get PDF
    Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above? and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized

    Palliative and end-of-life care research in Scotland 2006-2015: A systematic scoping review

    Get PDF
    Background: The Scottish Government set out its 5-year vision to improve palliative care in its Strategic Framework for Action 2016–2021. This includes a commitment to strengthening research and evidence based knowledge exchange across Scotland. A comprehensive scoping review of Scottish palliative care research was considered an important first step. The aim of the review was to quantify and map palliative care research in Scotland over the ten-year period preceding the new strategy (2006–15). Methods: A systematic scoping review was undertaken. Palliative care research involving at least one co-author from a Scottish institution was eligible for inclusion. Five databases were searched with relevant MeSH terms and keywords; additional papers authored by members of the Scottish Palliative and End of Life Care Research Forum were added. Results: In total, 1919 papers were screened, 496 underwent full text review and 308 were retained in the final set. 73% were descriptive studies and 10% were interventions or feasibility studies. The top three areas of research focus were services and settings; experiences and/or needs; and physical symptoms. 58 papers were concerned with palliative care for people with conditions other than cancer – nearly one fifth of all papers published. Few studies focused on ehealth, health economics, out-of-hours and public health. Nearly half of all papers described unfunded research or did not acknowledge a funder (46%). Conclusions: There was a steady increase in Scottish palliative care research during the decade under review. Research output was strong compared with that reported in an earlier Scottish review (1990–2005) and a similar review of Irish palliative care research (2002–2012). A large amount of descriptive evidence exists on living and dying with chronic progressive illness in Scotland; intervention studies now need to be prioritised. Areas highlighted for future research include palliative interventions for people with non-malignant illness and multi-morbidity; physical and psychological symptom assessment and management; interventions to support carers; and bereavement support. Knowledge exchange activities are required to disseminate research findings to research users and a follow-up review to examine future research progress is recommended

    Toward a methodical framework for comprehensively assessing forest multifunctionality

    Get PDF
    Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized

    Toward a methodical framework for comprehensively assessing forest multifunctionality

    No full text
    Biodiversity-ecosystem functioning (BEF) research has extended its scope from communities that are short-lived or reshape their structure annually to structurally complex forest ecosystems. The establishment of tree diversity experiments poses specific methodological challenges for assessing the multiple functions provided by forest ecosystems. In particular, methodological inconsistencies and nonstandardized protocols impede the analysis of multifunctionality within, and comparability across the increasing number of tree diversity experiments. By providing an overview on key methods currently applied in one of the largest forest biodiversity experiments, we show how methods differing in scale and simplicity can be combined to retrieve consistent data allowing novel insights into forest ecosystem functioning. Furthermore, we discuss and develop recommendations for the integration and transferability of diverse methodical approaches to present and future forest biodiversity experiments. We identified four principles that should guide basic decisions concerning method selection for tree diversity experiments and forest BEF research: (1) method selection should be directed toward maximizing data density to increase the number of measured variables in each plot. (2) Methods should cover all relevant scales of the experiment to consider scale dependencies of biodiversity effects. (3) The same variable should be evaluated with the same method across space and time for adequate larger-scale and longer-time data analysis and to reduce errors due to changing measurement protocols. (4) Standardized, practical and rapid methods for assessing biodiversity and ecosystem functions should be promoted to increase comparability among forest BEF experiments. We demonstrate that currently available methods provide us with a sophisticated toolbox to improve a synergistic understanding of forest multifunctionality. However, these methods require further adjustment to the specific requirements of structurally complex and long-lived forest ecosystems. By applying methods connecting relevant scales, trophic levels, and above- and belowground ecosystem compartments, knowledge gain from large tree diversity experiments can be optimized

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date
    corecore