99 research outputs found

    Diminished Intracellular Invariant Chain Expression Following Vaccinia Virus Infection

    Get PDF
    Vaccinia virus (VV) has been used as a vaccine to eradicate smallpox and as a vaccine for HIV and tumors. However, the immunoevasive properties of VV, have raised safety concerns. VV infection of APC perturbs MHC class II-mediated Ag presentation. Exposure of human B cell lines to VV induced a dramatic reduction in cellular expression of the class II chaperone, invariant chain (Ii) during the late stages (i.e. 8ā€“10 h) of infection. Yet, cell viability and surface expression of MHC class II molecules were maintained up to 24 h after exposure to virus. Reductions in Ii and class II mRNA levels were detected as early as 6 h after VV infection of APC. To examine whether VV was acting solely to disrupt host protein synthesis, B cells were treated with an inhibitor of translation, cycloheximide (CHX). Within 1 h of B cell CHX treatment, Ii protein expression decreased coupled with a loss of class II presentation. Analysis of Ii degradation in VV or CHX treated cells, revealed on-going Ii proteolysis contributing to reduced steady state Ii levels in these APC. Yet in contrast with CHX, VV infection of APC altered lysosomal protease expression and Ii degradation. Virus infection induced cellular cathepsin L expression while reducing the levels of other lysosomal proteases. These results demonstrate that at late stages of VV infection, reductions in cellular Ii levels coupled with changes in lysosomal protease activity, contribute in part to defects in class II presentation

    A central role for HSC70 in regulating antigen trafficking and MHC class II presentation

    Get PDF
    Cells rely on multiple intracellular trafficking pathways to capture antigens for proteolysis. The resulting peptides bind to MHC class II molecules to promote CD4(+) T cell recognition. Endocytosis enhances the capture of extracellular and cell surface bound antigens for processing and presentation, while autophagy pathways shunt cytoplasmic and nuclear antigens for presentation in the context of MHC class II molecules. Understanding how physiological changes and cellular stress alter antigen trafficking and the repertoire of peptides presented by class II molecules remains challenging, yet important in devising novel approaches to boost immune responses to pathogens and tumors. An abundant, constitutively expressed cytoplasmic chaperone, HSC70 plays a central role in modulating antigen transport within cells to control MHC class II presentation during nutrient stress. HSC70 may serve as a molecular switch to modulate endocytic and autophagy pathways, impacting the source of antigens delivered for MHC class II presentation during cellular stress

    Macronutrient deprivation modulates antigen trafficking and immune recognition through HSC70 accessibility.

    Get PDF
    B lymphocytes exploit macroautophagy to capture cytoplasmic and nuclear proteins within autophagosomes. Fusion of autophagosomes with lysosomes and endosomes facilitates content proteolysis, with the resulting peptides selectively binding MHC class II (MHC II) molecules, which are displayed for recognition by T lymphocytes. Nutrient deprivation or stress amplified this pathway, favoring increased MHC II presentation of cytoplasmic Ags targeted to autophagosomes. By contrast, this stress diminished MHC II presentation of membrane Ags including the BCR and cytoplasmic proteins that use the chaperone-mediated autophagy pathway. Whereas intracellular protease activity increased with nutrient stress, endocytic trafficking and proteolytic turnover of the BCR was impaired. Addition of macronutrients such as high molecular mass proteins restored endocytosis and Ag presentation, evidence of tightly regulated membrane trafficking dependent on macronutrient status. Altering cellular levels of the cytosolic chaperone HSC70 was sufficient to overcome the inhibitory effects of nutritional stress on BCR trafficking and Ag presentation. Together, these results reveal a key role for macronutrient sensing in regulating immune recognition and the importance of HSC70 in modulating membrane trafficking pathways during cellular stress

    Cytosol to Lysosome Transport of Intracellular Antigens During Immune Surveillance

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The delivery of intracellular substrates such as misfolded proteins and damaged organelles from the cytosol to the lysosome for degradation is crucial for cell survival. Multiple transport pathways including bulk autophagy (microautophagy and macroautophagy) and chaperoneā€mediated autophagy (CMA) have been identified to efficiently facilitate this transit of macromolecules from the cytoplasm to acidic vacuolar organelles. While autophagy plays a role in the general housekeeping of cells, it also functions in more specialized processes such as development and differentiation, responses to physiological stress and immunity. The presentation of both exogenous and endogenous antigens (Ag) by major histocompatibility complex (MHC) class II molecules to CD4+ T lymphocytes is critical for the induction of tolerance to self Ag as well as the development of immunity against intracellular pathogens and tumors. Here, we discuss the class IIā€mediated presentation of several endogenous Ag, dependent on either macroautophagy or CMA for their transport from the cytosol to endosomal/lysosomal compartments. Thus, the various pathways of autophagy as routes of cytoplasmic Ag delivery to lysosomes have significant implications for the MHC class IIā€mediated immune response to intracellular pathogens and cancer

    Early activation of peripheral monocytes with hallmarks of M1 and M2 monocytic cells in excessive alcohol drinkers: a pilot study

    Get PDF
    Excessive drinking can lead to the development of immune dysfunction. Our aim is to investigate the effect of alcohol on immune activation from circulating peripheral blood monocytes in excessive drinkers (EDs). Twenty-two EDs and healthy controls were enrolled. Time line follow-back was used to quantify the amount of alcohol consumed in the past 30 days before enrollment. Peripheral blood-derived CD14+ monocytes were isolated for gene expression analyses. Serum interleukin (IL)-6, IL-10 and lipopolysaccharides (LPS) were also measured. We found that serum LPS concentrations were significantly higher in EDs compared with controls (P<0.05). While no differences in the levels of circulating IL-6 and IL-10 were observed, the relative levels of gene transcripts (RQ) for Il6 (an M1-polarizing cytokine) and Il10 (an M2-polarizing cytokine) were significantly higher in peripheral blood-derived monocytes from EDs compared with controls (Il6: P<0.01. Il10: P<0.05). EDs exhibit early immune activation of peripheral blood monocyte mRNA transcripts, notably Il6 and Il10 Future studies are needed to explore the clinical implications of our findings and determine whether the levels of Il6 and Il10 mRNA expression can be used to identify those with excessive drinking and to monitor for alcohol abstinence

    Critical role of PPARĪ³ in myeloid-derived suppressor cell-stimulated cancer cell proliferation and metastasis

    Get PDF
    Lysosomal acid lipase (LAL) is a key enzyme controlling neutral lipid metabolic signaling in myeloid-derived suppressor cells (MDSCs). MDSCs from LAL-deficient (lal-/-) mice directly stimulate cancer cell proliferation. PPARĪ³ ligand treatment inhibited lal-/- MDSCs stimulation of tumor cell growth and metastasis in vivo, and tumor cell proliferation and migration in vitro. In addition, PPARĪ³ ligand treatment impaired lal-/- MDSCs transendothelial migration, and differentiation from lineage-negative cells. The corrective effects of PPARĪ³ ligand on lal-/- MDSCs functions were mediated by regulating the mammalian target of rapamycin (mTOR) pathway, and subsequently blocking MDSCs ROS overproduction. Furthermore, in the myeloid-specific dominant-negative PPARĪ³ (dnPPARĪ³) overexpression bitransgenic mouse model, tumor growth and metastasis were enhanced, and MDSCs from these mice stimulated tumor cell proliferation and migration. MDSCs with dnPPARĪ³ overexpression showed increased transendothelial migration, overactivation of the mTOR pathway, and ROS overproduction. These results indicate that PPARĪ³ plays a critical role in neutral lipid metabolic signaling controlled by LAL, which provides a mechanistic basis for clinically targeting MDSCs to reduce the risk of cancer proliferation, growth and metastasis

    Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease with a prolonged and variable latent period that culminates in the destruction of pancreatic Ī²-cells and the development of hyperglycemia. There is a need for diagnostic biomarkers to detect more accurately detect individuals with prediabetes to expedite targeting for prevention and intervention strategies. To assess the current ability to predict the insidious development of T1D, we conducted a comprehensive systematic review for established and prospective predictive markers of T1D using the Medline, OVID, and EMBASE databases. Resulting citations were screened for relevance to subject. Our research generated five major categories of markers that are either currently used or forthcoming: genetic, autoantibodies, risk score quantification, cellular immunity, and Ī²-cell function. The current standard used to assess T1D onset or predisposition focuses on autoimmune pathology and disease-associated autoantibodies. Research studies in general go beyond autoantibody screening and assess genetic predisposition, and quantitate risk of developing disease based on additional factors. However, there are few currently used techniques that assess the root of T1D: Ī²-cell destruction. Thus, novel techniques are discussed with the potential to gauge degrees of Ī²-cell stress and failure via protein, RNA, and DNA analyses

    Melanoma LAMP-2C Modulates Tumor Growth and Autophagy

    Get PDF
    Autophagy plays critical but diverse roles in cellular quality control and homeostasis potentially checking tumor development by removing mutated or damaged macromolecules, while conversely fostering tumor survival by supplying essential nutrients during cancer progression. This report documents a novel inhibitory role for a lysosome-associated membrane protein, LAMP-2C in modulating autophagy and melanoma cell growth in vitro and in vivo. Solid tumors such as melanomas encounter a variety of stresses in vivo including inflammatory cytokines produced by infiltrating lymphocytes directed at limiting tumor growth and spread. Here, we report that in response to the anti-tumor, pro-inflammatory cytokine interferon-gamma, melanoma cell expression of LAMP2C mRNA significantly increased. These results prompted an investigation of whether increased melanoma cell expression of LAMP-2C might represent a mechanism to control or limit human melanoma growth and survival. In this study, enhanced expression of human LAMP-2C in melanoma cells perturbed macroautophagy and chaperone-mediated autophagy in several human melanoma lines. In vitro analysis showed increasing LAMP-2C expression in a melanoma cell line, triggered reduced cellular LAMP-2A and LAMP-2B protein expression. Melanoma cells with enhanced LAMP-2C expression displayed increased cell cycle arrest, increased expression of the cell cycle regulators Chk1 and p21, and greater apoptosis and necrosis in several cell lines tested. The increased abundance of Chk1 protein in melanoma cells with increased LAMP-2C expression was not due to higher CHEK1 mRNA levels, but rather an increase in Chk1 protein abundance including Chk1 molecules phosphorylated at Ser345. Human melanoma cell xenografts with increased LAMP-2C expression, displayed reduced growth in immune compromised murine hosts. Melanomas with high LAMP-2C expression showed increased necrosis and reduced cell density upon histological analysis. These results reveal a novel role for LAMP-2C in negatively regulating melanoma growth and survival

    LAMP-2C inhibits MHC class II presentation of cytoplasmic antigens by disrupting chaperone-mediated autophagy

    Get PDF
    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags
    • ā€¦
    corecore