322 research outputs found

    A new method to determine the grain size of planetary regolith

    Get PDF
    Airless planetary bodies are covered by a dusty layer called regolith. The grain size of the regolith determines the temperature and the mechanical strength of the surface layers. Thus, knowledge of the grain size of planetary regolith helps to prepare future landing and/or sample-return missions. In this work, we present a method to determine the grain size of planetary regolith by using remote measurements of the thermal inertia. We found that small bodies in the Solar System (diameter less than ~100 km) are covered by relatively coarse regolith grains with typical particle sizes in the millimeter to centimeter regime, whereas large objects possess very fine regolith with grain sizes between 10 and 100 micrometer.Comment: Accepted by Icaru

    The physics of protoplanetesimal dust agglomerates. VII The low-velocity collision behavior of large dust agglomerates

    Full text link
    We performed micro-gravity collision experiments in our laboratory drop-tower using 5-cm-sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. (2011) to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm/s to 0.5 m/s, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. (2011). At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. The work is an extensional study to previous work of our group and gives a new insight in the velocity dependency of the coefficient of restitution due to improved measurements, better statistics and a theoretical approach

    The stratification of regolith on celestial objects

    Full text link
    All atmosphere-less planetary bodies are covered with a dust layer, the so-called regolith, which determines the optical, mechanical and thermal properties of their surface. These properties depend on the regolith material, the size distribution of the particles it consists of, and the porosity to which these particles are packed. We performed experiments in parabolic flights to determine the gravity dependency of the packing density of regolith for solid-particle sizes of 60 μ\mum and 1 mm as well as for 100-250 μ\mum-sized agglomerates of 1.5 μ\mum-sized solid grains. We utilized g-levels between 0.7 m s2^{-2} and 18 m s2^{-2} and completed our measurements with experiments under normal gravity conditions. Based on previous experimental and theoretical literature and supported by our new experiments, we developed an analytical model to calculate the regolith stratification of celestial rocky and icy bodies and estimated the mechanical yields of the regolith under the weight of an astronaut and a spacecraft resting on these objects.Comment: 15 pages, 12 figure

    The Suborbital Particle Aggregation and Collision Experiment (SPACE): Studying the Collision Behavior of Submillimeter-Sized Dust Aggregates on the Suborbital Rocket Flight REXUS 12

    Full text link
    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model
    corecore