16 research outputs found

    Development of failure tolerant multi-layer silicon nitride ceramics: Review from macro to micro layered structures

    No full text
    Recent developments have shown that producing multi-layer ceramic laminates with alternative layers under compressive and tensile stress can lead to significant improvements in toughness at a low cost. However, in many cases the improvements in fracture toughness is associated with the presence of surface edge cracks in the compressive layers or the use of porous interfaces between the layers. At the same time such effects can limit the performance of ceramics when used in harsh environments. This review covers the development of silicon nitride based laminate structures and characterisation of these multi-layer structures. The work presents the results of macro-layered laminates with layers greater than 150 μm thickness. The apparent fracture toughness of different designs is measured and the conditions for failure tolerant effects, including crack deflection, bifurcation and edge cracking, are shown and discussed. The structural and processing limitations of the macro-layered laminates are also presented. The development of a weight function analysis as an effective design tool for developing micro-layered laminates with layers of approximately 50 μm thickness is discussed along with the apparent fracture toughness results from these micro-laminates. The failure tolerant behaviour as well as the ease of producing micro-layered laminates with a toughness of 2-3 times higher than that of silicon nitride is shown

    Tribological behaviour of Si3N4 and Si3N4–%TiN based composites and multi-layer laminates

    No full text
    Si3N4–TiN based multi-layer laminates exhibit differences in residual stress between individual layers due to a variation of the thermal expansion coefficient between the layers. The residual stress distribution in these multi-layer laminates is known to improve the apparent macroscopic fracture toughness. In this work, the tribological behaviour of bulk, composites and multi-layers laminates are investigated. Si3N4 bulk, Si3N4 based composites with 10, 20 and 30 wt% TiN and different multi-layer laminates have been tested under dry conditions with reciprocal movement using a ball-on-block configuration. In particular, the influence of sliding directions with respect to the layer orientations has been investigated. The experimental results show that wear resistance increased with increasing TiN content in Si3N4–TiN composites. However, multi-layer laminates exhibit an up to three times higher apparent fracture toughness, but do not show an improvement of wear resistance compared to composites

    SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes

    No full text
    Aluminum alloys are well known light-weight alloys and very interesting materials to optimize the strength/weight ratio in order to reduce automotive vehicle weight, fuel consumption and CO2 emissions; unfortunately, they are also relatively soft and therefore cannot be used for high wear applications. The aim of this work was to develop an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) joined on to its surface. Different approaches based on brazing or shrink fitting joining technologies were used to join SiC/Al to the aluminum alloy surface. A functional graded structure was built by brazing thin layers of aluminum matrix composites reinforced with progressively higher amount of SiC particles by using a Zn–Al based alloy as joining material. Several samples were prepared by shrink fitting and brazing: 40 mm x 40 mm x 10 mm samples and a 100 mm diameter brake disc with 68% SiC particle reinforced Al matrix surface and aluminum alloy A365 body. Tribological tests demonstrated that an aluminum alloy brake disc with wear-resistant SiC particle reinforced aluminum matrix composites (SiC/Al) brazed on its surface is a promising technical opportunity

    CNT and PDCs: A fruitful association? Study of a polycarbosilane–MWCNT composite

    No full text
    The effect of MWCNT introduction in a polycarbosilane based ceramic on its electrical properties is presented. The electrical conductivity of two MWCNT powders was measured under dynamic compaction up to 20 MPa when it reached 3–5 S/cm. The compaction behavior was also analyzed and modeled. A composite was then realized using allylhydridopolycarbosilane SMP10® and divinylbenzene as matrix. Intact 10 mm MWCNT-SiC ceramic discs samples with 2 wt.% filler load were produced pressure-less via liquid route despite the linear shrinkage of about 30%. Nanotubes microstructure and distribution in the matrix were confirmed after pyrolysis with TEM and SEM analysis. Anyhow similar electrical conductivity values after pyrolysis between the loaded and unloaded samples were measured. The microstructure analysis via XRD and TEM revealed that the percolative carbon network formed through the use of divinylbenzene improves the electric conductivity more than that of MWCNT addition and also simplifies the whole process

    Spark Plasma Sintered B4C—Structural, Thermal, Electrical and Mechanical Properties

    No full text
    The structural, thermal, electrical and mechanical properties of fully dense B4C ceramics, sintered using Spark Plasma Sintering (SPS), were studied and compared to the properties of B4C ceramics previously published in the literature. New results on B4C’s mechanical responses were obtained by nanoindentation and ring-on-ring biaxial strength testing. The findings contribute to a more complete knowledge of the properties of B4C ceramics, an important material in many industrial applications
    corecore