113 research outputs found
Hadronic multiparticle production in extensive air showers and accelerator experiments
Using CORSIKA for simulating extensive air showers, we study the relation
between the shower characteristics and features of hadronic multiparticle
production at low energies. We report about investigations of typical energies
and phase space regions of secondary particles which are important for muon
production in extensive air showers. Possibilities to measure relevant
quantities of hadron production in existing and planned accelerator experiments
are discussed.Comment: To be published in Proceedings of ICRC 2005, 29th International
Cosmic Ray Conferenc
Atmospheric Profiles at the Southern Pierre Auger Observatory and their Relevance to Air Shower Measurement
The dependence of atmospheric conditions on altitude and time have to be
known at the site of an air shower experiment for accurate reconstruction of
extensive air showers and their simulations. The height-profile of atmospheric
depth is of particular interest as it enters directly into the reconstruction
of longitudinal shower development and of the primary energy and mass of cosmic
rays. For the southern part of the Auger Observatory, the atmosphere has been
investigated in a number of campaigns with meteorological radio soundings and
with continuous measurements of ground-based weather stations. Focussing on
atmospheric depth and temperature profiles, temporal variations are described
and monthly profiles are developed. Uncertainties of the monthly atmospheres
that are currently applied in the Auger reconstruction are discussed.Comment: To be published in Proceedings of 29th International Cosmic Ray
Conference (ICRC) 2005, Pune, Indi
Experimental Constraints on the Neutrino Oscillations and a Simple Model of Three Flavour Mixing
A simple model of the neutrino mixing is considered, which contains only one
right-handed neutrino field, coupled via the mass term to the three usual
left-handed fields. This is a simplest model that allows for three-flavour
neutrino oscillations. The existing experimental limits on the neutrino
oscillations are used to obtain constraints on the two free mixing parameters
of the model. A specific sum rule relating the oscillation probabilities of
different flavours is derived.Comment: 10 pages, 3 figures in post script, Latex, IFT 2/9
Amplitude calibration of a digital radio antenna array for measuring cosmic ray air showers
Radio pulses are emitted during the development of air showers, where air
showers are generated by ultra-high energy cosmic rays entering the Earth's
atmosphere. These nanosecond short pulses are presently investigated by various
experiments for the purpose of using them as a new detection technique for
cosmic particles. For an array of 30 digital radio antennas (LOPES experiment)
an absolute amplitude calibration of the radio antennas including the full
electronic chain of the data acquisition system is performed, in order to
estimate absolute values of the electric field strength for these short radio
pulses. This is mandatory, because the measured radio signals in the MHz
frequency range have to be compared with theoretical estimates and with
predictions from Monte Carlo simulations to reconstruct features of the primary
cosmic particle. A commercial reference radio emitter is used to estimate
frequency dependent correction factors for each single antenna of the radio
antenna array. The expected received power is related to the power recorded by
the full electronic chain. Systematic uncertainties due to different
environmental conditions and the described calibration procedure are of order
20%.Comment: Article accepted by Nuclear Instruments and Methods in Physics
Research, A (NIM A
How chemistry controls electron localization in 3d1 perovskites: A Wannier-function study
In the series of 3d1 t2g perovskites, SrVO3--CaVO3--LaTiO3--YTiO3 the
transition-metal d electron becomes increasingly localized and undergoes a Mott
transition between CaVO3 and LaTiO3. By defining a low-energy Hubbard
Hamiltonian in the basis of Wannier functions for the t2g LDA band and solving
it in the single-site DMFT approximation, it was recently shown[1] that
simultaneously with the Mott transition there occurs a strong suppression of
orbital fluctuations due to splitting of the t2g levels. The present paper
reviews and expands this work, in particular in the direction of exposing the
underlying chemical mechanisms by means of ab initio LDA Wannier functions
generated with the NMTO method. The Wannier functions for the t2g band exhibit
covalency between the transition-metal t2g, the large cation-d, and the
oxygen-p states; this covalency, which increases along the series, turns out to
be responsible not only for the splittings of the t2g levels, but also for
non-cubic perturbations of the hopping integrals, both of which are decisive
for the Mott transition. We find good agreement with the optical and
photoemission spectra, with the crystal-field splittings and orbital
polarizations recently measured for the titanates, and with the metallization
volume for LaTiO3. The metallization volume for YTiO3 is predicted. Using
super-exchange theory, we reproduce the observed magnetic orders in LaTiO3 and
YTiO3, but the results are sensitive to detail, in particular for YTiO3 which,
without the Jahn-Teller distortion, would be AFM C- or A-type, rather than FM.
Finally, we show that it possible to unfold the orthorhombic t2g LDA
bandstructure to a pseudocubic zone. In this zone, the lowest band is separated
from the two others by a direct gap and has a width, W_I, which is
significantly smaller than that, W, of the entire t2g band. The progressive
GdFeO3-type distortion favours electron localization by decreasing W, by
increasing the splitting of the t2g levels and by decreasing W_I. Our
conclusions concerning the roles of GdFeO3-type and JT distortions agree with
those of Mochizuki and Imada [2].Comment: Published version, final. For high resolution figures see
http://www.fkf.mpg.de/andersen/docs/pub/abstract2004+/pavarini_02.pd
First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers
We report the first direct measurement of the overall characteristics of
microwave radio emission from extensive air showers. Using a trigger provided
by the KASCADE-Grande air shower array, the signals of the microwave antennas
of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have
been read out and searched for signatures of radio emission by high-energy air
showers in the GHz frequency range. Microwave signals have been detected for
more than 30 showers with energies above 3*10^16 eV. The observations presented
in this Letter are consistent with a mainly forward-directed and polarised
emission process in the GHz frequency range. The measurements show that
microwave radiation offers a new means of studying air showers at energies
above 10^17 eV.Comment: Accepted for publication in PR
KCDC - The KASCADE Cosmic-ray Data Centre
KCDC, the KASCADE Cosmic-ray Data Centre, is a web portal, where data of
astroparticle physics experiments will be made available for the interested
public. The KASCADE experiment, financed by public money, was a large-area
detector for the measurement of high-energy cosmic rays via the detection of
air showers. KASCADE and its extension KASCADE-Grande stopped finally the
active data acquisition of all its components including the radio EAS
experiment LOPES end of 2012 after more than 20 years of data taking. In a
first release, with KCDC we provide to the public the measured and
reconstructed parameters of more than 160 million air showers. In addition,
KCDC provides the conceptional design, how the data can be treated and
processed so that they are also usable outside the community of experts in the
research field. Detailed educational examples make a use also possible for
high-school students and early stage researchers.Comment: 8 pages, accepted proceeding of the ECRS-symposium, Kiel, 201
- …