3,547 research outputs found
The wave equation on the Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation
Odd-type spin 2 perturbations of Einstein's equation can be reduced to the
scalar Regge-Wheeler equation. We show that the weighted norms of solutions are
in L^2 of time and space. This result uses commutator methods and applies
uniformly to all relevant spherical harmonics.Comment: AMS-LaTeX, 8 pages with 1 figure. There is an errata to this paper at
gr-qc/060807
Uniform Decay of Local Energy and the Semi-Linear Wave Equation on Schwarzchild Space
We provide a uniform decay estimate of Morawetz type for the local energy of
general solutions to the inhomogeneous wave equation on a Schwarzchild
background. This estimate is both uniform in space and time, so in particular
it implies a uniform bound on the sup norm of solutions which can be given in
terms of certain inverse powers of the radial and advanced/retarded time
coordinate variables. As a model application, we show these estimates give a
very simple proof small amplitude scattering for nonlinear scalar fields with
higher than cubic interactions.Comment: 24 page
Stability and Instability of Extreme Reissner-Nordstr\"om Black Hole Spacetimes for Linear Scalar Perturbations I
We study the problem of stability and instability of extreme
Reissner-Nordstrom spacetimes for linear scalar perturbations. Specifically, we
consider solutions to the linear wave equation on a suitable globally
hyperbolic subset of such a spacetime, arising from regular initial data
prescribed on a Cauchy hypersurface crossing the future event horizon. We
obtain boundedness, decay and non-decay results. Our estimates hold up to and
including the horizon. The fundamental new aspect of this problem is the
degeneracy of the redshift on the event horizon. Several new analytical
features of degenerate horizons are also presented.Comment: 37 pages, 11 figures; published version of results contained in the
first part of arXiv:1006.0283, various new results adde
Strichartz estimates on Schwarzschild black hole backgrounds
We study dispersive properties for the wave equation in the Schwarzschild
space-time. The first result we obtain is a local energy estimate. This is then
used, following the spirit of earlier work of Metcalfe-Tataru, in order to
establish global-in-time Strichartz estimates. A considerable part of the paper
is devoted to a precise analysis of solutions near the trapping region, namely
the photon sphere.Comment: 44 pages; typos fixed, minor modifications in several place
- …