90 research outputs found

    The Behavior of Pneumococci in the Chick Embryo.

    Get PDF

    Characterization of a site on PAI-1 that binds to vitronectin outside of the somatomedin B domain

    Get PDF
    Vitronectin and plasminogen activator inhibitor-1 (PAI-1) are proteins that interact in the circulatory system and pericellular region to regulate fibrinolysis, cell adhesion, and migration. The interactions between the two proteins have been attributed primarily to binding of the somatomedin B (SMB) domain, which comprises the N-terminal 44 residues of vitronectin, to the flexible joint region of PAI-1, including residues Arg-103, Met-112, and Gln-125 of PAI-1. A strategy for deletion mutagenesis that removes the SMB domain demonstrates that this mutant form of vitronectin retains PAI-1 binding (Schar, C. R., Blouse, G. E., Minor, K. M., and Peterson, C. B. (2008) J. Biol. Chem. 283, 10297-10309). In the current study, the complementary binding site on PAI-1 was mapped by testing for the ability of a battery of PAI-1 mutants to bind to the engineered vitronectin lacking the SMB domain. This approach identified a second, separate site for interaction between vitronectin and PAI-1. The binding of PAI-1 to this site was defined by a set of mutations in PAI-1 distinct from the mutations that disrupt binding to the SMB domain. Using the mutations in PAI-1 to map the second site suggested interactions between α-helices D and E in PAI-1 and a site in vitronectin outside of the SMB domain. The affinity of this second interaction exhibited a KD value ∼100-fold higher than that of the PAI-1-somatomedin B interaction. In contrast to the PAI-1-somatomedin B binding, the second interaction had almost the same affinity for active and latent PAI-1. We hypothesize that, together, the two sites form an extended binding area that may promote assembly of higher order vitronectin-PAI-1 complexes. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc

    A mechanism for assembly of complexes of vitronectin and plasminogen activator inhibitor-1 from sedimentation velocity analysis

    Get PDF
    Plasminogen activator inhibitor-1 (PAI-1) and vitronectin are cofactors involved in pathological conditions such as injury, inflammation, and cancer, during which local levels of PAI-1 are increased and the active serpin forms complexes with vitronectin. These complexes become deposited into surrounding tissue matrices, where they regulate cell adhesion and pericellular proteolysis. The mechanism for their co-localization has not been elucidated. We hypothesize that PAI-1-vitronectin complexes form in a stepwise and concentration-dependent fashion via 1:1 and 2:1 intermediates, with the 2:1 complex serving a key role in assembly of higher order complexes. To test this hypothesis, sedimentation velocity experiments in the analytical ultracentrifuge were performed to identify different PAI-1-vitronectin complexes. Analysis of sedimentation data invoked a novel multisignal method to discern the stoichiometry of the two proteins in the higher-order complexes formed (Balbo, A., Minor, K. H., Velikovsky, C. A., Mariuzza, R. A., Peterson, C. B., and Schuck, P. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 81-86). Our results demonstrate that PAI-1 and vitronectin assemble into higher order forms via a pathway that is triggered upon saturation of the two PAI-1-binding sites of vitronectin to form the 2:1 complex. This 2:1 PAI-1-vitronectin complex, with a sedimentation coefficient of 6.5 S, is the key intermediate for the assembly of higher order complexes

    New Staphylococcus aureus phage type 94/96(292) associated with a fatal septicemia

    No full text

    Camel ensemble

    No full text
    Ensemble: Jacket: camel color; six button front closure; one flap pocket on chest; long sleeves; Mandarin collar; pointed bottom. Skirt: camel color; floor length; wide waist band above pleats; back zipper. Blouse: camel color with blue and red horizontal stripes; sleeveless; boat neckline
    • …
    corecore