11 research outputs found

    Perioperative Quality Initiative (POQI) consensus statement on the physiology of blood pressure control as applied to perioperative medicine.

    Get PDF
    Background: A multi-disciplinary, international working subgroup of the Third Perioperative Quality Initiative (POQI) consensus meeting reviewed the (patho)physiology and measurement of arterial blood pressure (ABP), as applied to perioperative medicine. Methods: We addressed predefined questions by undertaking a modified Delphi analysis, in which primary clinical research and review articles were identified using MEDLINE. Strength of recommendations, where applicable, were graded by NICE guidelines. Results: Perioperative ABP management is a physiologically-complex challenge influenced by multiple factors: (i) ABP is the input pressure to organ blood flow, but is not the sole determinant of perfusion pressure; (ii) blood flow is often independent of changes in perfusion pressure, due to autoregulatory changes in vascular resistance; (iii) microvascular dysfunction uncouples microvascular blood flow from ABP (haemodynamic incoherence) From a practical clinical perspective, we identified that: (i) ambulatory measurement is the optimal method to establish baseline ABP; (ii) automated and invasive ABP measurements have inherent physiological and technical limitations; (iii) individualised ABP targets may change over time, especially during the perioperative period. There remains a need for research in non-invasive, continuous arterial pressure measurements, macro- and microcirculatory control, regional perfusion pressure measurement and the development of sensitive, specific and continuous measures of cellular function to evaluate blood pressure management in a physiologically coherent manner. Conclusion: The multivariable, complex physiology contributing to dynamic changes in perioperative ABP may be underappreciated clinically. The frequently unrecognised dissociation between ABP, organ blood flow, microvascular and cellular function requires further research that develops a more refined, contextualized clinical approach to this routine measurement

    Oxygen Consumption: Another Key Component in Predicting Ventilator Weaning Success

    No full text

    Why the Gray Zone May Shift within the Fog

    No full text

    The Quality of Recovery after Dexamethasone, Ondansetron, or Placebo Administration in Patients Undergoing Lower Limbs Orthopedic Surgery under Spinal Anesthesia Using Intrathecal Morphine. A Randomized Controlled Trial

    No full text
    Intrathecal morphine is widely and successfully used to prevent postoperative pain after orthopedic surgery, but it is frequently associated with side effects. The aim of this study was to evaluate the effect of dexamethasone or ondansetron when compared to placebo to reduce the occurrence of these undesirable effects and, consequently, to improve the quality of recovery based on patient's perspective. Methods. One hundred and thirty-five patients undergoing lower extremity orthopedic surgery under spinal anesthesia using bupivacaine and morphine were randomly assigned to receive IV dexamethasone, ondansetron, or saline. On the morning following surgery, a quality of recovery questionnaire (QoR-40) was completed. Results. No differences were detected in the global and dimensional QoR-40 scores following surgery; however, following postanesthesia care unit (PACU) discharge, pain scores were higher in patients receiving ondansetron compared with patients who received dexamethasone. Conclusion. Neither ondansetron nor dexamethasone improves the quality of recovery after lower limbs orthopedic surgery under spinal anesthesia using intrathecal morphine.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Documentation of individualized preoperative risk assessment: a multi-center study

    Get PDF
    Seven hundred fifty-six of 140,756 inpatient charts met inclusion criteria (0.54%, 95% CI 0.50 to 0.58%). ISRAs were documented by 16.08% of surgeons and 4.76% of anesthesiologists (p < 0.0001, 95% CI -0.002 to 0.228). Cardiac surgeons documented ISRAs more frequently than non-cardiac surgeons (25.87% vs 16.15%) [p = 0.0086, R-squared = 0.970%]. Elective surgical patients were more likely than emergency surgical patients (19.57 vs 12.03%) to have risk documented (p = 0.023, R-squared = 0.730%). Patients over the age of 65 were more likely than patients under the age of 65 to have ISRA documentation (20.31 vs 14.61%) [p = 0.043, R-squared = 0.580%]. Only 10 of 756 (1.3%) records included documentation of a named ISRA tool.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Perioperative Quality Initiative consensus statement on intraoperative blood pressure, risk and outcomes for elective surgery

    No full text
    Background Intraoperative mortality is now rare, but death within 30 days of surgery remains surprisingly common. Perioperative myocardial infarction is associated with a remarkably high mortality. There are strong associations between hypotension and myocardial injury, myocardial infarction, renal injury, and death. Perioperative arterial blood pressure management was thus the basis of a Perioperative Quality Initiative consensus-building conference held in London in July 2017. Methods The meeting featured a modified Delphi process in which groups addressed various aspects of perioperative arterial pressure. Results Three consensus statements on intraoperative blood pressure were established. 1) Intraoperative mean arterial pressures below 60–70 mm Hg are associated with myocardial injury, acute kidney injury, and death. Injury is a function of hypotension severity and duration. 2) For adult non-cardiac surgical patients, there is insufficient evidence to recommend a general upper limit of arterial pressure at which therapy should be initiated, although pressures above 160 mm Hg have been associated with myocardial injury and infarction. 3) During cardiac surgery, intraoperative systolic arterial pressure above 140 mm Hg is associated with increased 30 day mortality. Injury is a function of arterial pressure severity and duration. Conclusions There is increasing evidence that even brief durations of systolic arterial pressure &lt;100 mm Hg and mean arterial pressure &lt;60–70 mm Hg are harmful during non-cardiac surgery

    Perioperative fluid therapy: a statement from the international fluid optimization group

    Get PDF
    Perioperative fluid therapy remains a highly debated topic. Its purpose is to maintain or restore effective circulating blood volume during the immediate perioperative period. Maintaining effective circulating blood volume and pressure are key components of assuring adequate organ perfusion while avoiding the risks associated with either organ hypo- or hyperperfusion. Relative to perioperative fluid therapy, three inescapable conclusions exist: overhydration is bad, underhydration is bad, and what we assume about the fluid status of our patients may be incorrect. There is wide variability of practice, both between individuals and institutions. The aims of this paper are to clearly define the risks and benefits of fluid choices within the perioperative space, to describe current evidence-based methodologies for their administration, and ultimately to reduce the variability with which perioperative fluids are administered. Based on the abovementioned acknowledgements, a group of 72 researchers, well known within the field of fluid resuscitation, were invited, via email, to attend a meeting that was held in Chicago in 2011 to discuss perioperative fluid therapy. From the 72 invitees, 14 researchers representing 7 countries attended, and thus, the international Fluid Optimization Group (FOG) came into existence. These researches, working collaboratively, have reviewed the data from 162 different fluid resuscitation papers including both operative and intensive care unit populations. This manuscript is the result of 3 years of evidence-based, discussions, analysis, and synthesis of the currently known risks and benefits of individual fluids and the best methods for administering them. The results of this review paper provide an overview of the components of an effective perioperative fluid administration plan and address both the physiologic principles and outcomes of fluid administration. We recommend that both perioperative fluid choice and therapy be individualized. Patients should receive fluid therapy guided by predefined physiologic targets. Specifically, fluids should be administered when patients require augmentation of their perfusion and are also volume responsive. This paper provides a general approach to fluid therapy and practical recommendations
    corecore