78 research outputs found

    Interleukin-7 restores lymphocytes in septic shock: The IRIS-7 randomized clinical trial

    Get PDF
    BACKGROUND: A defining pathophysiologic feature of sepsis is profound apoptosis-induced death and depletion of CD4+ and CD8+ T cells. Interleukin-7 (IL-7) is an antiapoptotic common γ-chain cytokine that is essential for lymphocyte proliferation and survival. Clinical trials of IL-7 in over 390 oncologic and lymphopenic patients showed that IL-7 was safe, invariably increased CD4+ and CD8+ lymphocyte counts, and improved immunity. METHODS: We conducted a prospective, randomized, double-blind, placebo-controlled trial of recombinant human IL-7 (CYT107) in patients with septic shock and severe lymphopenia. Twenty-seven patients at academic sites in France and the United States received CYT107 or placebo for 4 weeks. Primary aims were to determine the safety of CYT107 in sepsis and its ability to reverse lymphopenia. RESULTS: CYT107 was well tolerated without evidence of inducing cytokine storm or worsening inflammation or organ dysfunction. CYT107 caused a 3- to 4-fold increase in absolute lymphocyte counts and in circulating CD4+ and CD8+ T cells that persisted for weeks after drug administration. CYT107 also increased T cell proliferation and activation. CONCLUSIONS: This is the first trial of an immunoadjuvant therapy targeting defects in adaptive immunity in patients with sepsis. CYT107 reversed the marked loss of CD4+ and CD8+ immune effector cells, a hallmark of sepsis and a likely key mechanism in its morbidity and mortality. CYT107 represents a potential new way forward in the treatment of patients with sepsis by restoring adaptive immunity. Such immune-based therapy should be broadly protective against diverse pathogens including multidrug resistant bacteria that preferentially target patients with impaired immunity. TRIAL REGISTRATION: Trials registered at clinicaltrials.gov: NCT02640807 and NCT02797431. FUNDING: Revimmune, NIH National Institute of General Medical Sciences GM44118

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44652/1/10834_2005_Article_BF01081976.pd

    Interleukine-7 administrée par voie intraveineuse pour inverser la lymphopénie chez les patients en état de choc septique : essai en double aveugle, randomisé et contrôlé par placebo

    Get PDF
    International audienceBackgroundProfound lymphopenia is an independent predictor of adverse clinical outcomes in sepsis. Interleukin-7 (IL-7) is essential for lymphocyte proliferation and survival. A previous phase II study showed that CYT107, a glycosylated recombinant human IL-7, administered intramuscularly reversed sepsis-induced lymphopenia and improved lymphocyte function. The present study evaluated intravenous administration of CYT107. This prospective, double-blinded, placebo-controlled trial was designed to enroll 40 sepsis patients, randomized 3:1 to CYT107 (10 µg/kg) or placebo, for up to 90 days. ResultsTwenty-one patients were enrolled (fifteen CYT107 group, six placebo group) at eight French and two US sites. The study was halted early because three of fifteen patients receiving intravenous CYT107 developed fever and respiratory distress approximately 5–8 h after drug administration. Intravenous administration of CYT107 resulted in a two–threefold increase in absolute lymphocyte counts (including in both CD4 + and CD8 + T cells (all p < 0.05)) compared to placebo. This increase was similar to that seen with intramuscular administration of CYT107, was maintained throughout follow-up, reversed severe lymphopenia and was associated with increase in organ support free days (OSFD). However, intravenous CYT107 produced an approximately 100-fold increase in CYT107 blood concentration compared with intramuscular CYT107. No cytokine storm and no formation of antibodies to CYT107 were observed. Conclusion Intravenous CYT107 reversed sepsis-induced lymphopenia. However, compared to intramuscular CYT107 administration, it was associated with transient respiratory distress without long-term sequelae. Because of equivalent positive laboratory and clinical responses, more favorable pharmacokinetics, and better patient tolerability, intramuscular administration of CYT107 is preferable. Trial registration : Clinicaltrials.gov, NCT03821038. Registered 29 January 2019, https://clinicaltrials.gov/ct2/show/NCT03821038?term=NCT03821038&draw=2&rank=

    Late complications after hematopoietic stem cell transplantation

    No full text
    Hematopoietic stem cell transplantation (HSCT) offers the opportunity for cure to patients with leukemia, lymphoma and severe non-malignant diseases. More than 40,000 HSCTs are performed annually worldwide. Therefore, the number of long-term survivors, free of the disease for which they were transplanted is continuously increasing. Despite the improved prognosis of HSCT, long-term outcome may be impaired by transplant-associated morbidity and mortality. Long-term survivors can present a variety of malignant and non-malignant complications, impairing physical and psychological performance, normal integration in family and social life, and quality of life. Conditioning regimens, particularly when including total-body irradiation as well as graft-versus-host disease, play a key role in the development of late effects. However, with increasing time since transplantation new types of late effects may emerge. Awareness on long-term effects after HSCT is crucial to provide adapted pretransplant counseling, and recommendations for post-transplant screening, prevention and early treatment

    Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections

    No full text
    COVID-19-associated morbidity and mortality have been attributed to a pathologic host response. Two divergent hypotheses have been proposed: hyperinflammatory cytokine storm; and failure of host protective immunity that results in unrestrained viral dissemination and organ injury. A key explanation for the inability to address this controversy has been the lack of diagnostic tools to evaluate immune function in COVID-19 infections. ELISpot, a highly sensitive, functional immunoassay, was employed in 27 patients with COVID-19, 51 patients with sepsis, 18 critically ill nonseptic (CINS) patients, and 27 healthy control volunteers to evaluate adaptive and innate immune status by quantitating T cell IFN-ɣ and monocyte TFN-α production. Circulating T cell subsets were profoundly reduced in COVID-19 patients. Additionally, stimulated blood mononuclear cells produced less than 40%-50% of the IFN-ɣ and TNF-α observed in septic and CINS patients, consistent with markedly impaired immune effector cell function. Approximately 25% of COVID-19 patients had increased IL-6 levels that were not associated with elevations in other canonical proinflammatory cytokines. Collectively, these findings support the hypothesis that COVID-19 suppresses host functional adaptive and innate immunity. Importantly, IL-7 administered ex vivo restored T cell IFN-ɣ production in COVID-19 patients. Thus, ELISpot may functionally characterize host immunity in COVID-19 and inform prospective therapies
    corecore