28 research outputs found

    Autoreactive B cells in rheumatoid arthritis include mainly activated CXCR3+memory B cells and plasmablasts

    Get PDF
    Many autoimmune diseases (AIDs) are characterized by the persistence of autoreactive B cell responses, which have been directly implicated in disease pathogenesis. How and why these cells are generated or how they are maintained for years is largely unknown. Rheumatoid arthritis (RA) is among the most common AIDs and is characterized by autoantibodies recognizing proteins with posttranslational modifications (PTMs). This PTM-directed autoreactive B cell compartment is ill defined. Here, we visualized the B cell response against the three main types of PTM antigens implicated in RA by spectral flow cytometry. Our results showed extensive cross-reactivity of PTM-directed B cells against all three PTM antigens (citrulline, homocitrulline, and acetyllysine). Unsupervised clustering revealed several distinct memory B cell (mBC) populations. PTM-directed cells clustered with the most recently activated class-switched mBC phenotype, with high CD80, low CD24, and low CD21 expression. Notably, patients also harbored large fractions of PTM-directed plasmablasts (PBs). Both PTM-directed mBCs and PBs showed high expression of CXCR3, a receptor for chemokines present in abundance in arthritic joints. Together, our data provide detailed insight into the biology of B cell autoreactivity and its remarkable, seemingly exhaustless persistence in a prominent human AID. Pathophysiology and treatment of rheumatic disease

    Autoreactive B cells in rheumatoid arthritis consist of activated CXCR3+ memory B cells and plasmablasts

    Get PDF
    Many autoimmune diseases (AIDs) are characterized by persistence of autoreactive B cell responses which is often directly implicated in disease pathogenesis. How and why these cells are generated or how they are maintained for years is largely unknown. Rheumatoid arthritis is among the most common AIDs and characterized by autoantibodies recognizing proteins with post-translational modifications (PTMs). This PTM-directed, autoreactive B cell compartment is ill defined. Here, we visualized the B cell response against the three main types of PTM antigens implicated in RA by spectral flow cytometry. Our results show extensive cross-reactivity of autoreactive B cells against all three PTM antigens (citrulline, homocitrulline and acetyllysine). Unsupervised clustering revealed several distinct memory B cell (mBC) populations. Autoreactive cells clustered with the most recently activated, class-switched mBC phenotype, expressing high CD80, low CD24 and low CD21. Notably, patients also harbored large fractions of autoreactive plasmablasts (PB). Both PTM-directed mBC and PB showed high expression of CXCR3, a receptor for chemokines abundantly present in arthritic joints. Together, our data provide novel, detailed insight into the biology of B cell autoreactivity and its remarkable, seemingly exhaustless persistence in a prominent human AID. Pathophysiology and treatment of rheumatic disease

    Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis

    Get PDF
    Autoreactive B cells mediate autoimmune pathology, but exactly how remains unknown. A hallmark of rheumatoid arthritis (RA), a common autoimmune disease, is the presence of disease-specific anticitrullinated protein antibodies (ACPAs). Here, we showed that ACPA-positive B cells in patients with RA strongly expressed T cell-stimulating ligands, produced abundant proinflammatory cytokines, and were proliferative while escaping inhibitory signals. This activated state was found at different degrees in different stages of disease: highest in patients with recentonset RA, moderate in patients with established RA, and far less pronounced in ACPA-positive individuals "at risk" for developing disease. The activated autoreactive B cell response persisted in patients who achieved clinical remission with conventional treatment. ACPA-positive B cells in blood and synovial fluid secreted increased amounts of the chemoattractant interleukin-8, which attracted neutrophils, the most abundant immune cell in arthritic joints. Tetanus toxoid-specific B cells from the same patients exhibited properties of memory B cells without the activation and proliferation phenotype, but these cells transiently acquired a similar proliferative phenotype upon booster vaccination. Together, these data indicated that continuous antigenic triggering of autoreactive B cells occurs in human autoimmune disease and support the emerging concept of immunological activity that persists under treatment even in clinical remission, which may revise our current concept of treatment targets for future therapeutic interventions. In addition, our data pointed to a pathogenic role of ACPA-positive B cells in the inflammatory disease process underlying RA and favor approaches that aim at their antigen-specific inactivation or depletion.Pathophysiology and treatment of rheumatic disease

    Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data.

    Get PDF
    In many disciplines, data are highly decentralized across thousands of online databases (repositories, registries, and knowledgebases). Wringing value from such databases depends on the discipline of data science and on the humble bricks and mortar that make integration possible; identifiers are a core component of this integration infrastructure. Drawing on our experience and on work by other groups, we outline 10 lessons we have learned about the identifier qualities and best practices that facilitate large-scale data integration. Specifically, we propose actions that identifier practitioners (database providers) should take in the design, provision and reuse of identifiers. We also outline the important considerations for those referencing identifiers in various circumstances, including by authors and data generators. While the importance and relevance of each lesson will vary by context, there is a need for increased awareness about how to avoid and manage common identifier problems, especially those related to persistence and web-accessibility/resolvability. We focus strongly on web-based identifiers in the life sciences; however, the principles are broadly relevant to other disciplines
    corecore