4,977 research outputs found

    Variations in roughness predictions (flume experiments)

    Get PDF
    Data of flume experiments with bed forms are used to analyze and compare different roughness predictors. In this study, the hydraulic roughness consists of grain roughness and form roughness. We predict the grain roughness by means of the size of the sediment. The form roughness is predicted by three approaches: Van Rijn (1984), Vanoni & Hwang (1967) and Engelund (1966). The total roughness values (friction factors) are compared with the roughness values according to the DarcyWeisbach equation. Results show that the different methods predict different friction factors. In future research uncertainties in the hydraulic roughness will be taken into account to determine their influence on the computed water levels

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Palaeoenvironmental signatures revealed from rare earth element (REE) compositions of vertebrate microremains of the Vesiku Bone Bed (Homerian, Wenlock), Saaremaa Island, Estonia

    Get PDF
    The Estonian Journal of Earth Sciences is an open access journal and applies the Creative Commons Attribution 4.0 International License CC BY to all its papers (http://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article

    Rosenbrock time integration for unsteady flow simulations

    Get PDF
    This contribution compares the efficiency of Rosenbrock time integration schemes with ESDIRK schemes, applicable to unsteady flow and fluid-structure interaction simulations. Compared to non-linear ESDIRK schemes, the linear implicit Rosenbrock- Wanner schemes require subsequent solution of the same linear systems with different right hand sides. By solving the linear systems with the iterative solver GMRES, the preconditioner can be reused for the subsequent stages of the Rosenbrock-Wanner scheme. Unsteady flow simulations show a gain in computational efficiency of approximately factor three to five in comparison with ESDIRK

    Determination of the trap-assisted recombination strength in polymer light emitting diodes

    Get PDF
    The recombination processes in poly(p-phenylene vinylene) based polymer light-emitting diodes (PLEDs) are investigated. Photogenerated current measurements on PLED device structures reveal that next to the known Langevin recombination also trap-assisted recombination is an important recombination channel in PLEDs, which has not been considered until now. The dependence of the open-circuit voltage on light intensity enables us to determine the strength of this process. Numerical modeling of the current-voltage characteristics incorporating both Langevin and trap-assisted recombination yields a correct and consistent description of the PLED, without the traditional correction of the Langevin prefactor. At low bias voltage the trap-assisted recombination rate is found to be dominant over the free carrier recombination rate.

    Theory of anomalous magnetic interference pattern in mesoscopic SNS Josephson junctions

    Get PDF
    The magnetic interference pattern in mesoscopic SNS Josephson junctions is sensitive to the scattering in the normal part of the system. In this paper we investigate it, generalizing Ishii's formula for current-phase dependence to the case of normal scattering at NS boundaries in an SNS junction of finite width. The resulting flattening of the first diffraction peak is consistent with experimental data for S-2DEG-S mesoscopic junctions.Comment: 6 pages, 5 figures. Phys. Rev. B 68, 144514 (2003

    Fokker-Planck equation with variable diffusion coefficient in the Stratonovich approach

    Full text link
    We consider the Langevin equation with multiplicative noise term which depends on time and space. The corresponding Fokker-Planck equation in Stratonovich approach is investigated. Its formal solution is obtained for an arbitrary multiplicative noise term given by g(x,t)=D(x)T(t)g(x,t)=D(x)T(t), and the behaviors of probability distributions, for some specific functions of D(x)D(x)% , are analyzed. In particular, for D(x)∼∣x∣−θ/2D(x)\sim | x| ^{-\theta /2}, the physical solutions for the probability distribution in the Ito, Stratonovich and postpoint discretization approaches can be obtained and analyzed.Comment: 6 pages in LATEX cod

    Confluence reduction for Markov automata

    Get PDF
    Markov automata are a novel formalism for specifying systems exhibiting nondeterminism, probabilistic choices and Markovian rates. Recently, the process algebra MAPA was introduced to efficiently model such systems. As always, the state space explosion threatens the analysability of the models generated by such specifications. We therefore introduce confluence reduction for Markov automata, a powerful reduction technique to keep these models small. We define the notion of confluence directly on Markov automata, and discuss how to syntactically detect confluence on the MAPA language as well. That way, Markov automata generated by MAPA specifications can be reduced on-the-fly while preserving divergence-sensitive branching bisimulation. Three case studies demonstrate the significance of our approach, with reductions in analysis time up to an order of magnitude
    • …
    corecore