171 research outputs found

    The SIMPLEXYS experiment : real time expert systems in patient monitoring

    Get PDF

    Medical Electrical Engineering

    Get PDF

    Medische elektrotechniek

    Get PDF

    Analysing the Control Software of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    Full text link
    The control software of the CERN Compact Muon Solenoid experiment contains over 30,000 finite state machines. These state machines are organised hierarchically: commands are sent down the hierarchy and state changes are sent upwards. The sheer size of the system makes it virtually impossible to fully understand the details of its behaviour at the macro level. This is fuelled by unclarities that already exist at the micro level. We have solved the latter problem by formally describing the finite state machines in the mCRL2 process algebra. The translation has been implemented using the ASF+SDF meta-environment, and its correctness was assessed by means of simulations and visualisations of individual finite state machines and through formal verification of subsystems of the control software. Based on the formalised semantics of the finite state machines, we have developed dedicated tooling for checking properties that can be verified on finite state machines in isolation.Comment: To appear in FSEN'11. Extended version with details of the ASF+SDF translation of SML into mCRL

    Sigref ā€“ A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center ā€œAutomatic Verification and Analysis of Complex Systemsā€ (SFB/TR 14 AVACS). See www.avacs.org for more information
    • ā€¦
    corecore