2 research outputs found

    Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation

    Get PDF
    Inflammation is an important component of various cancers and its inflammatory cells and mediators have been shown to have prognostic potential. Tumor-infiltrating mast cells can promote tumor growth and angiogenesis, but the mechanism of mast cell activation is unclear. In earlier studies, we demonstrated that immunoglobulin free light chains (FLC) can trigger mast cells in an antigen-specific manner. Increased expression of FLC was observed within stroma of various human cancers including those of breast, colon, lung, pancreas, kidney and skin, and FLC expression co-localized with areas of mast cell infiltration. In a large cohort of breast cancer patients, FLC expression was shown associated with basal-like cancers with an aggressive phenotype. Moreover, lambda FLC was found expressed in areas of inflammatory infiltration and its expression was significantly associated with poor clinical outcome. Functional importance of FLCs was shown in a murine B16F10 melanoma model, where inhibition of FLC-mediated mast cell activation strongly reduced tumor growth. Collectively, this study identifies FLCs as a ligand in the pro-tumorigenic activation of mast cells. Blocking this pathway may open new avenues for the inhibition of tumor growth, while immunohistochemical staining of FLC may be helpful in the diagnosis and prognosis of cancer

    Ig-Free Light Chains Play a Crucial Role in Murine Mast Cell-Dependent Colitis and Are Associated with Human Inflammatory Bowel Diseases

    No full text
    Traditionally, mast cells were regarded as key cells orchestrating type I hypersensitivity responses. However, it is now recognized that mast cells are widely involved in nonallergic (non-IgE) chronic diseases. Also, in inflammatory bowel disease (IBD), a disease not associated with increased IgE concentrations, clear signs of activation of mast cells have been found. In this study, we investigated if Ig-free L chain-induced hypersensitivity-like responses through activation of mast cells could contribute to the pathophysiology of IBD. As a mast cell-dependent model for IBD, mice were skin-sensitized with dinitrofluorobenzene followed by intrarectal application of the hapten. In this murine IBD model, F991 prevented mast cell activation and also abrogated the development of diarrhea, cellular infiltration, and colonic lymphoid follicle hyperplasia. Furthermore, passive immunization with Ag-specific Ig-free L chains (IgLCs) and subsequent rectal hapten challenge elicited local mast cell activation and increased vascular permeability in the colon of mice. Clinical support is provided by the observation that serum concentrations of IgLCs of patients suffering from Crohn's disease are greatly increased. Moreover, increased presence of IgLCs was evident in tissue specimens from colon and ileum tissue of patients with IBD. Our data suggest that IgLCs may play a role in the pathogenesis of IBD, which provides novel therapeutic means to prevent or ameliorate the adverse gastrointestinal manifestations of IBD. The Journal of Immunology, 2010, 185: 653-659.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
    corecore