9 research outputs found

    Pulse-periodic laser action to create an ordered heterogeneous structure based on copper and zinc oxides

    No full text
    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСского Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ воздСйствия для создания упорядочСнной Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½ΠΎΠΉ структуры CuO / ZnO. ΠžΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΠ»ΠΎΡΡŒ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСскоС воздСйствиС ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ CO2-слэб Π»Π°Π·Π΅Ρ€Π° ROFIN DC 010 Π½Π° Π΄Π²Π° Ρ‚ΠΈΠΏΠ° ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΈΠ· Π»Π°Ρ‚ΡƒΠ½ΠΈ Π›62: ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π½ΡƒΡ‚Ρ‹Π΅ повСрхностному Ρ‚Ρ€Π°Π²Π»Π΅Π½ΠΈΡŽ послС ΡˆΠ»ΠΈΡ„ΠΎΠ²ΠΊΠΈ. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ мощности излучСния Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 270...330 Π’Ρ‚ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½ возрастала, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΈΠ΅ Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠ½Π°. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠ½Π°, ΡƒΠΊΡ€Π΅ΠΏΠ»Π΅Π½Π½Ρ‹Π΅ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅, ΠΈΠΌΠ΅Π»ΠΈ Π΄Π»ΠΈΠ½Ρƒ ~0,5...3 ΠΌΠΊΠΌ, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ ~40...90 Π½ΠΌ. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Cu-Zn сплава, подвСргнутая Ρ‚Ρ€Π°Π²Π»Π΅Π½ΠΈΡŽ ΠΈΠΌΠ΅Π»Π° Ρ‡Π΅Ρ‚ΠΊΠΎ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΌΡƒΡŽ ΠΌΠ΅ΠΆΠ·Π΅Ρ€Π΅Π½Π½ΡƒΡŽ Π³Ρ€Π°Π½ΠΈΡ†Ρƒ с Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ Π·Π΅Ρ€Π΅Π½ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ~40...100 ΠΌΠΊΠΌ. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² послС травлСния состояла ΠΈΠ· чистой ΠΌΠ΅Π΄ΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ оксидирования Π½Π° Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… Π·Π΅Ρ€Π΅Π½, Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π΄ΠΎ ~20...30 ΠΌΠΊΠΌ, наблюдался рост Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½ ZnO. ΠŸΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ оксидирования Π»Π°Π·Π΅Ρ€Π½Ρ‹ΠΌ воздСйствиСм Π½Π° Π²ΠΎΠ·Π΄ΡƒΡ…Π΅, рост Π½Π°Π½ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΎΠ½ ZnO становился Π±ΠΎΠ»Π΅Π΅ интСнсивным. A method of pulse-periodic laser action has been developed to create an ordered heterogeneous structure of CuO / ZnO. The pulse-periodic irradiation of a CO2 slab ROFIN DC 010 laser into two types of brass samples L62: ground and surface etched after grinding was performed. It was found that when the beam power was increased in the range 270–330 W, the density of nanowires increased, shorter and wider nanowires formed. The synthesized nanowires reinforced on the substrate had a length of ~ 0.5–3 ΞΌm, a diameter of ~ 40–90 nm. The surface of the Cu-Zn alloy subjected to etching had a clearly discernable grain boundary with a grain size in the range of ~ 40–100 ΞΌm. The surface of the samples after etching consisted of pure copper. As a result of oxidation at the grain boundaries, whose size decreases to ~ 20–30 ΞΌm, growth of ZnO nanowires was observed. With an increase in the time of oxidation by laser exposure to air, the growth of ZnO nanowires became more intense

    Creation of ZnO-based nanomaterials using pulse-periodic laser action

    No full text
    Π‘ΠΎΠ·Π΄Π°Π½ мСталличСский ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹ΠΉ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹ΠΉ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» Π½Π° основС ZnO ΠΏΡ€ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСском Π»Π°Π·Π΅Ρ€Π½ΠΎΠΌ воздСйствии с частотой слСдования ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² 500 Π“Ρ†. Анализ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΌ Π²ΠΈΠ±Ρ€ΠΎΠ²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π²ΠΈΠ±Ρ€Π°Ρ†ΠΈΠΈ возрастаСт Π² случаС частот, ΠΊΡ€Π°Ρ‚Π½Ρ‹Ρ… частотС Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ, Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π° ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ частоты. Π‘Ρ‹Π»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ характСристики Π½Π°Π³Ρ€Π΅Π²Π° ΠΎΠ±Ρ€Π°Π·Ρ†Π° Π»Π°Π·Π΅Ρ€Π½Ρ‹ΠΌ воздСйствиСм. Анализ рСнтгСновского Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ изобраТСния ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ тСрмичСского окислСния ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎ-пСриодичСской Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ ΠΈΠ· пористого сплава Cu-Zn происходит ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ оксида ZnO. Показано, Ρ‡Ρ‚ΠΎ условиСм интСнсификации массопСрСноса Π² Ρ‚Π²Π΅Ρ€Π΄ΠΎΠΉ Ρ„Π°Π·Π΅ мСталличСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° являСтся нСстационарная локальная дСформация, вызванная высокомощным внСшним воздСйствиСм. Новый ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ созданию структур Π½Π° основС оксида Ρ†ΠΈΠ½ΠΊΠ° Π² чистом ΠΌΠ΅Ρ‚Π°Π»Π»-ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΌ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π΅ ZnO/Cu прСдставляСт собой ΡΠΈΠ½Π΅Ρ€Π³ΠΈΡŽ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ воздСйствия ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎ-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Π² Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ частот. Creation of metallic-semiconductor nanocomposite materials based on ZnO nanowires under pulse-periodic laser action with a pulse frequency of 500 Hz was performed. At analyzing of the results it was found that with laser-induced vibroexcitation of samples, the vibration rate increases in the case of frequencies that are divisible by the frequency of initial oscillation, during the amplitude decrease with the frequency increase. The sample heating features by laser action was determined. Analysis of the X-ray diffraction image showed that the ZnO oxide formation on the substrate of porous Cu–Zn alloy occurs as a result thermal oxidation by the pulse-periodic laser treatment. It is shown that, condition for the intensification of mass transfer in the solid phase of a metallic material is a non-stationary local deformation, caused by a highly-powered external action. A new approach for the creation of structures of composite nanomaterials based on zinc oxide in pure metallic-semiconductor ZnO/Cu nanocomposite allows the use of synergies of thermal effects and laser-induced vibrations in the sound frequency range

    Past and present distribution, densities and movements of blue whales Balaenoptera musculus in the Southern Hemisphere and northern Indian Ocean

    No full text
    1. Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of 8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings. 2. Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar. 3. Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering. 4. Compared with historical catches, the Antarctic ("true") subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic. 5. Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic bluewhales
    corecore