6 research outputs found

    Application of CFD in Building Performance Simulation for the Outdoor Environment: an Overview

    Get PDF
    This article provides an overview of the application of computational fluid dynamics (CFD) in building performance simulation for the outdoor environment, focused on four topics: (1) pedestrian wind environment around buildings, (2) wind-driven rain on building facades, (3) convective heat transfer coefficients at exterior building surfaces and (4) air pollutant dispersion around buildings. For each topic, its background, the need for CFD, an overview of some past CFD studies, a discussion about accuracy and some perspectives for practical application are provided. This article indicates that for all four topics, CFD offers considerable advantages compared with wind tunnel modelling or (semi-)empirical formulae because it can provide detailed whole-flow field data under fully controlled conditions and without similarity constraints. The main limitations are the deficiencies of steady Reynolds-averaged Navier–Stokes modelling, the increased complexity and computational expense of large eddy simulation and the requirement of systematic and time-consuming CFD solution verification and validation studies

    CFD simulation of the atmospheric boundary layer: wall function problems

    No full text
    Accurate Computational Fluid Dynamics (CFD) simulations of atmospheric boundary layer (ABL) flow are essential for a wide variety of atmospheric studies including pollutant dispersion and deposition. The accuracy of such simulations can be seriously compromised when wall-function roughness modifications based on experimental data for sand-grain roughened pipes and channels are applied at the bottom of the computational domain. This type of roughness modification is currently present in many CFD codes including Fluent 6.2 and Ansys CFX 10.0, previously called CFX-5. The problems typically manifest themselves as unintended streamwise gradients in the vertical mean wind speed and turbulence profiles as they travel through the computational domain. These gradients can be held responsible—at least partly—for the discrepancies that are sometimes found between seemingly identical CFD simulations performed with different CFD codes and between CFD simulations and measurements. This paper discusses the problem by focusing on the simulation of a neutrally stratified, fully developed, horizontally homogeneous ABL over uniformly rough, flat terrain. The problem and its negative consequences are discussed and suggestions to improve the CFD simulations are made

    Wind environmental conditions between two long narrow perpendicular buildings

    No full text
    This paper presents wind tunnel measurements of pedestrian wind conditions in passages between various configurations of two long narrow perpendicular buildings in open country exposure. The investigated parameters include passage width, building height and wind direction. The measurements were made along the passage centerline. The aim of the paper is to provide more insight in the pedestrian wind conditions in these basic building configurations, to address some contradictory statements reported in the literature and to provide experimental data for CFD validation. The results show that, for the cases investigated, the amplification factors in diverging passages are generally larger than in converging passages. It is also shown that the maximum amplification factors increase monotonically with decreasing passage width, contrary to some general building design guidelines proposed in the past for all building configurations

    Wind-blown particulate transport: A review of computational fluid dynamics models

    No full text
    corecore