12,613 research outputs found
The Elusive p-air Cross Section
For the \pbar p and systems, we have used all of the extensive data of
the Particle Data Group[K. Hagiwara {\em et al.} (Particle Data Group), Phys.
Rev. D 66, 010001 (2002).]. We then subject these data to a screening process,
the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate
``outliers'' that can skew a fit. With the ``Sieve'' algorithm, a
robust fit using a Lorentzian distribution is first made to all of the data to
sieve out abnormally high \delchi, the individual i point's
contribution to the total . The fits are then made to the
sieved data. We demonstrate that we cleanly discriminate between asymptotic
and behavior of total hadronic cross sections when we require
that these amplitudes {\em also} describe, on average, low energy data
dominated by resonances. We simultaneously fit real analytic amplitudes to the
``sieved'' high energy measurements of and total cross sections
and -values for GeV, while requiring that their asymptotic
fits smoothly join the the and total cross
sections at 4.0 GeV--again {\em both} in magnitude and slope. Our
results strongly favor a high energy fit, basically excluding a fit. Finally, we make a screened Glauber fit for the p-air cross section,
using as input our precisely-determined cross sections at cosmic ray
energies.Comment: 15 pages, 6 figures, 2 table,Paper delivered at c2cr2005 Conference,
Prague, September 7-13, 2005. Fig. 2 was missing from V1. V3 fixes all
figure
Predicting Proton-Air Cross Sections at sqrt s ~30 TeV, using Accelerator and Cosmic Ray Data
We use the high energy predictions of a QCD-inspired parameterization of all
accelerator data on forward proton-proton and antiproton-proton scattering
amplitudes, along with Glauber theory, to predict proton-air cross sections at
energies near \sqrt s \approx 30 TeV. The parameterization of the proton-proton
cross section incorporates analyticity and unitarity, and demands that the
asymptotic proton is a black disk of soft partons. By comparing with the p-air
cosmic ray measurements, our analysis results in a constraint on the inclusive
particle production cross section.Comment: 9 pages, Revtex, uses epsfig.sty, 5 postscript figures. Minor text
revisions. Systematic errors in k included, procedure for extracting k
clarified. Previously undefined symbols now define
The Ghostly-Silent Guns of Galveston: A Chronicle of Colonel J.G. Kellersberger, the Confederate Chief Engineer of East Texas
The Swamp Angels: A History of Spaights 11th Battalion, Texas Volunteers, Confederate States Army
Tulip Transplants to East Texas: The Dutch Migration to Nederland, Port Arthur, and Winnie, 1895-1915
Ultrahigh energy neutrino scattering: an update
We update our estimates of charged and neutral current neutrino total cross
sections on isoscalar nucleons at ultrahigh energies using a global (x, Q^2)
fit, motivated by the Froissart bound, to the F_2 (electron-proton) structure
function utilizing the most recent analysis of the complete ZEUS and H1 data
sets from HERA I. Using the large Q^2, small Bjorken-x limits of the "wee"
parton model, we connect the ultrahigh energy neutrino cross sections directly
to the large Q^2, small-x extrapolation of our new fit, which we assume
saturates the Froissart bound. We compare both to our previous work, which
utilized only the smaller ZEUS data set, as well as to recent results of a
calculation using the ZEUS-S based global perturbative QCD parton distributions
using the combined HERA I results as input. Our new results substantiate our
previous conclusions, again predicting significantly smaller cross sections
than those predicted by extrapolating pQCD calculations to neutrino energies
above 10^9 GeV.Comment: 8 pages, 1 figure, 3 table
- …
