25,691 research outputs found

    Two-loop Improved Truncation of the Ghost-Gluon Dyson-Schwinger Equations: Multiplicatively Renormalizable Propagators and Nonperturbative Running Coupling

    Full text link
    The coupled Dyson-Schwinger equations for the gluon and ghost propagators are investigated in the Landau gauge using a two-loop improved truncation that preserves the multiplicative renormalizability of the propagators. In this truncation all diagrams contribute to the leading order infrared analysis. The infrared contributions of the nonperturbative two-loop diagrams to the gluon vacuum polarization are computed analytically, and this reveals that infrared power behaved propagator solutions only exist when the squint diagram contribution is taken into account. For small momenta the gluon and ghost dressing functions behave respectively like (p^2)^{2\kappa} and (p^2)^{-\kappa}, and the running coupling exhibits a fixed point. The values of the infrared exponent and fixed point depend on the precise details of the truncation. The coupled ghost-gluon system is solved numerically for all momenta, and the solutions have infrared behaviors consistent with the predictions of the infrared analysis. For truncation parameters chosen such that \kappa=0.5, the two-loop improved truncation is able to produce solutions for the propagators and running coupling which are in very good agreement with recent lattice simulations.Comment: 41 pages, LateX; minor corrections; accepted for publication in Few-Body System

    Control and stabilization of systems with homoclinic orbits

    Get PDF
    In this paper we consider the control of two physical systems, the near wall region of a turbulent boundary layer and the rigid body, using techniques from the theory of nonlinear dynamical systems. Both these systems have saddle points linked by heteroclinic orbits. In the fluid system we show how the structure of the phase space can be used to keep the system near an (unstable) saddle. For the rigid body system we discuss passage along the orbit as a possible control manouver, and show how the Energy-Casimir method can be used to analyze stabilization of the system about the saddles

    Classical and quantum interference in multiband optical Bloch oscillations

    Full text link
    Classical and quantum interference of light propagating in arrays of coupled waveguides and undergoing multiband optical Bloch oscillations (BOs) with negligible Zener tunneling is theoretically investigated. In particular, it is shown that Mach-Zehnder-like interference effects spontaneously arise in multiband BOs owing to beam splitting and subsequent beam recombination occurring in one BO cycle. As a noteworthy example of quantum interference, we discuss the doubling of interference fringes in photon counting rates for a correlated photon pair undergoing two-band BOs, a phenomenon analogous to the manifestation of the de Broglie wavelength of an entangled biphoton state observed in quantum Mach-Zehnder interferometry.Comment: 11 pages, 4 figure

    Potential shaping and the method of controlled Lagrangians

    Get PDF
    We extend the method of controlled Lagrangians to include potential shaping for complete state-space stabilization of mechanical systems. The method of controlled Lagrangians deals with mechanical systems with symmetry and provides symmetry-preserving kinetic shaping and feedback-controlled dissipation for state-space stabilization in all but the symmetry variables. Potential shaping complements the kinetic shaping by breaking symmetry and stabilizing the remaining state variables. The approach also extends the method of controlled Lagrangians to include a class of mechanical systems without symmetry such as the inverted pendulum on a cart that travels along an incline

    Comment on "Nucleon form factors and a nonpointlike diquark"

    Get PDF
    Authors of Phys. Rev. C 60, 062201 (1999) presented a calculation of the electromagnetic form factors of the nucleon using a diquark ansatz in the relativistic three-quark Faddeev equations. In this Comment it is pointed out that the calculations of these form factors stem from a three-quark bound state current that contains overcounted contributions. The corrected expression for the three-quark bound state current is derived.Comment: 6 pages, 1 figure, revtex, eps

    Vitronectin at sites of cell-substrate contact in cultures of rat myotubes

    Get PDF
    Affinity-purified antibodies to the serum glycoprotein, vitronectin, were used to study sites of cell-substrate contact in cultures of rat myotubes and fibroblasts. Cells were removed from the substrate by treatment with saponin, leaving fragments of plasma membrane attached to the glass coverslip. When stained for vitronectin by indirect immunofluorescence, large areas of the substrate were brightly labeled. The focal contacts of fibroblasts and the broad adhesion plaques of myotubes appeared black, however, indicating that the antibodies had failed to react with those areas. Contact sites within the adhesion plaque remained unlabeled after saponin-treated samples were extracted with Triton X-100, or after intact cultures were sheared with a stream of fixative. These procedures expose extracellular macromolecules at the cell-substrate interface, which can then be labeled with concanavalin A. In contrast, when samples were sheared and then sonicated to remove all the cellular material from the coverslip, the entire substrate labeled extensively and almost uniformly with anti- vitronectin. Extracellular molecules associated with substrate contacts were also studied after freeze-fracture, using a technique we term "post-release fracture labeling." Platinum replicas of the external membrane were removed from the glass with hydrofluoric acid to expose the extracellular material. Anti-vitronectin, bound to the replicas and visualized by a second antibody conjugated to colloidal gold, labeled the broad areas of close myotube-substrate attachment and the nearby glass equally well. Our results are consistent with the hypothesis that vitronectin is present at all sites of cell-substrate contact, but that its antigenic sites are obscured by material deposited by both myotube and fibroblast cells

    Strongly Secure Communications Over the Two-Way Wiretap Channel

    Full text link
    We consider the problem of secure communications over the two-way wiretap channel under a strong secrecy criterion. We improve existing results by developing an achievable region based on strategies that exploit both the interference at the eavesdropper's terminal and cooperation between legitimate users. We leverage the notion of channel resolvability for the multiple-access channel to analyze cooperative jamming and we show that the artificial noise created by cooperative jamming induces a source of common randomness that can be used for secret-key agreement. We illustrate the gain provided by this coding technique in the case of the Gaussian two-way wiretap channel, and we show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information Forensics and Security, Special Issue: "Using the Physical Layer for Securing the Next Generation of Communication Systems

    A Non-Perturbative Treatment of the Pion in the Linear Sigma-Model

    Get PDF
    Using a non-perturbative method based on the selfconsistent Quasi-particle Random-Phase Approximation (QRPA) we describe the properties of the pion in the linear σ\sigma-model. It is found that the pion is massless in the chiral limit, both at zero- and finite temperature, in accordance with Goldstone's theorem.Comment: To appear in Nucl.Phys. A, 16 pages, 2 Postscript figure

    Individual complex Dirac eigenvalue distributions from random matrix theory and lattice QCD at nonzero chemical potential

    Get PDF
    We analyze how individual eigenvalues of the QCD Dirac operator at nonzero chemical potential are distributed in the complex plane. Exact and approximate analytical results for such distributions are derived from non-Hermitian random matrix theory. When comparing these to lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class
    corecore