56 research outputs found

    CC9 Livestock-Associated Staphylococcus aureus Emerges in Bloodstream Infections in French Patients Unconnected With Animal Farming

    Get PDF
    We report 4 bloodstream infections associated with CC9 agr type II Staphylococcus aureus in individuals without animal exposure. We demonstrate, by microarray analysis, the presence of egc cluster, fnbA, cap operon, lukS, set2, set12, splE, splD, sak, epiD, and can, genomic features associated with a high virulence potential in human

    Membrane interaction of TNF is not sufficient to trigger increase in membrane conductance in mammalian cells

    No full text
    Tumor necrosis factor TNF can trigger increases in membrane conductance of mammalian cells in a receptor-independent manner via its lectin-like domain. A lectin-deficient TNF mutant, lacking this activity, was able to bind to artificial liposomes in a pH-dependent manner, but not to insert into the bilayer, just like wild type TNF. A peptide mimicking the lectin-like domain, which can still trigger increases in membrane currents in cells, failed to interact with liposomes. Thus, the capacity of TNF to trigger increases in membrane conductance in mammalian cells does not correlate with its ability to interact with membranes, suggesting that the cytokine does not form channels itself, but rather interacts with endogenous ion channels or with plasma membrane proteins that are coupled to ion channels

    Zinc-induced changes in ionic currents of clonal rat pancreatic β-cells: activation of ATP-sensitive K+ channels

    No full text
    The effects of zinc (Zn2+) on excitability and ionic conductances were analysed on RINm5F insulinoma cells under whole-cell and outside-out patch-clamp recording conditions.We found that extracellular application of 10-20 μM Zn2+ induced a reversible abolition of Ca2+ action potential firing, which was accompanied by an hyperpolarisation of the resting membrane potential.Higher concentrations of Zn2+, in the tens to hundreds micromolar range, induced a reversible reduction of voltage-gated Ca2+ and, to a lesser extent, K+ currents. Low-voltage-activated Ca2+ currents were more sensitive to Zn2+ block than high voltage-activated Ca2+ currents.The Zn2+-induced hyperpolarisation arose from a dose-dependent increase in a voltage-independent K+ conductance that was pharmacologically identified as an ATP-sensitive K+ (KATP) conductance. The effect was rapid in onset, readily reversible, voltage independent, and related to intracellular ATP concentration. In the presence of 1 mM intracellular ATP, half-maximal activation of KATP channels was obtained with extracellular application of 1.7 μM Zn2+.Single channel analysis revealed that extracellular Zn2+ increased the KATP channel open-state probability with no change in the single channel conductance.Our data support the hypothesis that Zn2+ binding to KATP protein subunits results in an activation of the channels, therefore regulating the resting membrane potential and decreasing the excitability of RINm5F cells. Taken together, our results suggest that Zn2+ can influence insulin secretion in pancreatic β-cells through a negative feedback loop, involving both KATP and voltage-gated conductances
    corecore