5 research outputs found

    H3S28P Antibody Staining of Okinawan Oikopleura dioica Suggests the Presence of Three Chromosomes [version 2; peer review: 2 approved]

    Get PDF
    Oikopleura dioica is a ubiquitous marine zooplankton of biological interest owing to features that include dioecious reproduction, a short life cycle, conserved chordate body plan, and a compact genome. It is an important tunicate model for evolutionary and developmental research, as well as investigations into marine ecosystems. The genome of north Atlantic O. dioica comprises three chromosomes. However, comparisons with the genomes of O. dioica sampled from mainland and southern Japan revealed extensive sequence differences. Moreover, historical studies have reported widely varying chromosome counts. We recently initiated a project to study the genomes of O. dioica individuals collected from the coastline of the Ryukyu (Okinawa) Islands in southern Japan. Given the potentially large extent of genomic diversity, we employed karyological techniques to count individual animals’ chromosomes in situ using centromere-specific antibodies directed against H3S28P, a prophase-metaphase cell cycle-specific marker of histone H3. Epifluorescence and confocal images were obtained of embryos and oocytes stained with two commercial anti-H3S28P antibodies (Abcam ab10543 and Thermo Fisher 07-145). The data lead us to conclude that diploid cells from Okinawan O. dioica contain three pairs of chromosomes, in line with the north Atlantic populations. The finding facilitates the telomere-to-telomere assembly of Okinawan O. dioica genome sequences and gives insight into the genomic diversity of O. dioica from different geographical locations. The data deposited in the EBI BioImage Archive provide representative images of the antibodies’ staining properties for use in epifluorescent and confocal based fluorescent microscopy

    Arabidopsis DNA topoisomerase I alpha is required for adaptive response to light and flower development

    No full text
    DNA topoisomerase I alpha (TOP1α) plays a specific role in Arabidopsis thaliana development and is required for stem cell regulation in shoot and floral meristems. Recently, a new role independent of meristem functioning has been described for TOP1α, namely flowering time regulation. The same feature had been detected by us earlier for fas5, a mutant allele of TOP1α. In this study we clarify the effects of fas5 on bolting initiation and analyze the molecular basis of its role on flowering time regulation. We show that fas5 mutation leads to a constitutive shade avoidance syndrome, accompanied by leaf hyponasty, petiole elongation, lighter leaf color and early bolting. Other alleles of TOP1α demonstrate the same shade avoidance response. RNA sequencing confirmed the activation of shade avoidance gene pathways in fas5 mutant plants. It also revealed the repression of many genes controlling floral meristem identity and organ morphogenesis. Our research further expands the knowledge of TOP1α function in plant development and reveals that besides stem cell maintenance TOP1α plays an important new role in regulating the adaptive plant response to light stimulus and flower development

    The cosmopolitan appendicularian Oikopleura dioica reveals hidden genetic diversity around the globe.

    Full text link
    Appendicularian tunicates are some of the most abundant mesozooplankton organisms with key roles in marine trophic webs and global carbon flux. Like most appendicularians with cosmopolitan distributions, Oikopleura dioica Fol, 1872 is considered a single species worldwide based on morphological features that distinguish them from other appendicularians. Despite their abundance, however, there are still only ~ 70 described appendicularian species, compared to over 2800 ascidian tunicates. Here we perform a molecular phylogenetic, morphological, and reproductive assessment of O. dioica specimens collected from the Ryukyu Archipelago, mainland Japan, and Europe. The specimens are morphologically very similar, with only detailed examination of the oikoplastic epithelium and quantitative measurements revealing minor distinguishing characteristics. Phylogenetic analyses of the ribosomal gene loci and mitochondrial cytochrome oxidase I (COI) gene strongly indicate that they form three separate genetic clades despite their morphological similarities. Finally, in vitro crosses between the Ryukyu and mainland Japanese specimens show total prezygotic reproductive isolation. Our results reveal that the current taxonomic O. dioica classification likely hides multiple cryptic species, highlighting the genetic diversity and complexity of their population structures. Cryptic organisms are often hidden under a single species name because their morphological similarities make them difficult to distinguish and their correct identification is fundamental to understanding Earth's biodiversity. O. dioica is an attractive model to understand how morphological conservation can be maintained despite pronounced genetic divergence

    The cosmopolitan appendicularian Oikopleura dioica reveals hidden genetic diversity around the globe

    No full text
    Appendicularian tunicates are some of the most abundant mesozooplankton organisms with key roles in marine trophic webs and global carbon flux. Like most appendicularians with cosmopolitan distributions, Oikopleura dioica Fol, 1872 is considered a single species worldwide based on morphological features that distinguish them from other appendicularians. Despite their abundance, however, there are still only ~ 70 described appendicularian species, compared to over 2800 ascidian tunicates. Here we perform a molecular phylogenetic, morphological, and reproductive assessment of O. dioica specimens collected from the Ryukyu Archipelago, mainland Japan, and Europe. The specimens are morphologically very similar, with only detailed examination of the oikoplastic epithelium and quantitative measurements revealing minor distinguishing characteristics. Phylogenetic analyses of the ribosomal gene loci and mitochondrial cytochrome oxidase I (COI) gene strongly indicate that they form three separate genetic clades despite their morphological similarities. Finally, in vitro crosses between the Ryukyu and mainland Japanese specimens show total prezygotic reproductive isolation. Our results reveal that the current taxonomic O. dioica classification likely hides multiple cryptic species, highlighting the genetic diversity and complexity of their population structures. Cryptic organisms are often hidden under a single species name because their morphological similarities make them difficult to distinguish and their correct identification is fundamental to understanding Earth’s biodiversity. O. dioica is an attractive model to understand how morphological conservation can be maintained despite pronounced genetic divergence
    corecore